Skip to main content
Top

2021 | OriginalPaper | Chapter

Atomistic Modelling of Nanocutting Processes

Authors : Francisco Rodriguez-Hernandez, Michail Papanikolaou, Konstantinos Salonitis

Published in: Experiments and Simulations in Advanced Manufacturing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents some of the state-of-the art investigations on Molecular Dynamics simulations of Nanocutting processes. The basic theory of Molecular Dynamics simulations has been presented to facilitate the understanding of the fundamental principles of this numerical modelling method and the techniques employed to extract meaningful macroscopic properties out of atomistic simulations. The advances of Molecular Dynamics simulations with respect to modelling nanocutting processes are at core of this chapter. More specifically, fundamental and pioneering MD studies of nanocutting processes are thoroughly discussed with special emphasis laid on phenomena taking place during material removal, such as thermal softening, dislocation generation and stress evolution. The nature of the Molecular Dynamics simulation method allows for capturing and monitoring the aforementioned phenomena; this cannot be easily achieved via experimental and other modelling techniques such as Finite Element Analysis and Discrete Element Modelling. It is expected that, over the years to come, Molecular Dynamics simulations will be increasingly employed for investigating material removal processes due to the rapid development of computational power.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brinksmeier E, Aurich J, Govekar E et al (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Technol 55:667–696CrossRef Brinksmeier E, Aurich J, Govekar E et al (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Technol 55:667–696CrossRef
4.
go back to reference Alder B, Wainwright T (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31:459 Alder B, Wainwright T (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31:459
6.
go back to reference Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan SA, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217 Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan SA, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217
7.
go back to reference Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909 Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909
8.
go back to reference Wang J, Wolf R, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174 Wang J, Wolf R, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174
9.
go back to reference Rappé AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035 Rappé AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035
15.
go back to reference Root D, Landis C, Cleveland T (1993) Valence bond concepts applied to the molecular mechanics description of molecular shapes. 1. Application to nonhypervalent molecules of the P-block. J Am Chem Soc 115(10):4201–4209 Root D, Landis C, Cleveland T (1993) Valence bond concepts applied to the molecular mechanics description of molecular shapes. 1. Application to nonhypervalent molecules of the P-block. J Am Chem Soc 115(10):4201–4209
16.
go back to reference Van Duin ACT, Dasgupta S, Lorant F, et al (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem 105:9396–9409 Van Duin ACT, Dasgupta S, Lorant F, et al (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem 105:9396–9409
22.
go back to reference Li J, Fang Q, Zhang L, Liu Y (2015) Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations. Appl Surf Sci 324:464–474CrossRef Li J, Fang Q, Zhang L, Liu Y (2015) Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations. Appl Surf Sci 324:464–474CrossRef
25.
go back to reference Zhou L, Huang H (2004) Are surfaces elastically softer or stiffer? Appl Phys Lett Zhou L, Huang H (2004) Are surfaces elastically softer or stiffer? Appl Phys Lett
26.
go back to reference Markopoulos AP, Kalteremidou KAL (2014) Molecular dynamics modelling of nanometric cutting. In: Key engineering materials, pp 298–303. Trans Tech Publications Ltd Markopoulos AP, Kalteremidou KAL (2014) Molecular dynamics modelling of nanometric cutting. In: Key engineering materials, pp 298–303. Trans Tech Publications Ltd
29.
go back to reference Finnis MW, Sinclair JE (1984) A simple empirical N-body potential for transition metals. Philos Mag A 50:45–55CrossRef Finnis MW, Sinclair JE (1984) A simple empirical N-body potential for transition metals. Philos Mag A 50:45–55CrossRef
31.
41.
go back to reference Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon Press Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon Press
42.
go back to reference Karkalos E, Markopoulos NP (2017) A Modeling nano-metric manufacturing processes with molecular dynamics method: a review. Current Nanosci Karkalos E, Markopoulos NP (2017) A Modeling nano-metric manufacturing processes with molecular dynamics method: a review. Current Nanosci
49.
go back to reference Stowers FI (1991) Molecular dynamics simulation of the chip formation process in single crystal copper and comparison with experimental data. ASPE Annu Meet Oct 100 Stowers FI (1991) Molecular dynamics simulation of the chip formation process in single crystal copper and comparison with experimental data. ASPE Annu Meet Oct 100
52.
go back to reference Han XS, Lin B, Yu SY, Wang SX (2002) Investigation of tool geometry in nanometric cutting by molecular dynamics simulation. J Mater Process Technol 129:105–108CrossRef Han XS, Lin B, Yu SY, Wang SX (2002) Investigation of tool geometry in nanometric cutting by molecular dynamics simulation. J Mater Process Technol 129:105–108CrossRef
54.
go back to reference Pekelharing AJ (1984) The exit failure of cemented carbide face milling cutters part I—fundamentals and phenomenae. CIRP Ann 33:47–50CrossRef Pekelharing AJ (1984) The exit failure of cemented carbide face milling cutters part I—fundamentals and phenomenae. CIRP Ann 33:47–50CrossRef
55.
go back to reference Liu K, Li XP, Liang SY (2007) The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv Manuf Technol 33:875–884CrossRef Liu K, Li XP, Liang SY (2007) The mechanism of ductile chip formation in cutting of brittle materials. Int J Adv Manuf Technol 33:875–884CrossRef
57.
58.
go back to reference Crawford JH, Merchant ME (1953) The influence of higher rake angles on performance in milling. Trans ASME 75:561–566 Crawford JH, Merchant ME (1953) The influence of higher rake angles on performance in milling. Trans ASME 75:561–566
65.
go back to reference Karkalos NE, Markopoulos AP, Kundrák J (2017) Molecular dynamics model of nano-metric peripheral grinding. In: Procedia CIRP Karkalos NE, Markopoulos AP, Kundrák J (2017) Molecular dynamics model of nano-metric peripheral grinding. In: Procedia CIRP
79.
go back to reference Papanikolaou M, Salonitis K (2019) Contact stiffness effects on nanoscale high-speed grinding: a molecular dynamics approach. Appl Surf Sci 493:212–224CrossRef Papanikolaou M, Salonitis K (2019) Contact stiffness effects on nanoscale high-speed grinding: a molecular dynamics approach. Appl Surf Sci 493:212–224CrossRef
93.
go back to reference Johnson R, Swikert M, Bisson E (1947) Friction at high sliding velocities. Cleveland, Ohio Johnson R, Swikert M, Bisson E (1947) Friction at high sliding velocities. Cleveland, Ohio
94.
go back to reference Anderson D, Warkentin A, Bauer R (2011) Experimental and numerical investigations of single abrasive-grain cutting. Int J Mach Tools Manuf 51:898–910CrossRef Anderson D, Warkentin A, Bauer R (2011) Experimental and numerical investigations of single abrasive-grain cutting. Int J Mach Tools Manuf 51:898–910CrossRef
99.
go back to reference Rowe WB (2013) Principles of modern grinding technology. Elsevier Inc. Rowe WB (2013) Principles of modern grinding technology. Elsevier Inc.
100.
go back to reference Shimizu J (2007) Molecular dynamics simulation of nano grinding-influence of tool stiffness. Int J Manuf Sci Technol 9:69 Shimizu J (2007) Molecular dynamics simulation of nano grinding-influence of tool stiffness. Int J Manuf Sci Technol 9:69
101.
go back to reference Shimizu J, Zhou L, Eda H (2008) Molecular dynamics simulation of effect of grinding wheel stiffness on nanogrinding process. Int J Abras Technol 1:316–326CrossRef Shimizu J, Zhou L, Eda H (2008) Molecular dynamics simulation of effect of grinding wheel stiffness on nanogrinding process. Int J Abras Technol 1:316–326CrossRef
102.
go back to reference Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Springer, Dordrecht, pp 226–229 Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Springer, Dordrecht, pp 226–229
106.
go back to reference Ausloos M, Berman DH (1985) A multivariate Weierstrass-Mandelbrot function. Proc R Soc London A Math Phys Sci 400:331–350MathSciNetMATH Ausloos M, Berman DH (1985) A multivariate Weierstrass-Mandelbrot function. Proc R Soc London A Math Phys Sci 400:331–350MathSciNetMATH
108.
go back to reference Jaeger CJ (1942) Moving sources of heat and the temperature of sliding contacts. J Proc Roy Soc New South Wales 76:202 Jaeger CJ (1942) Moving sources of heat and the temperature of sliding contacts. J Proc Roy Soc New South Wales 76:202
109.
go back to reference Outwater JO, Shaw CS (1952) Surface temperatures in grinding pdf. Trans ASME 74:73–86 Outwater JO, Shaw CS (1952) Surface temperatures in grinding pdf. Trans ASME 74:73–86
110.
go back to reference Munster A (1974) Statistical thermodynamics. Springer-Verlag Munster A (1974) Statistical thermodynamics. Springer-Verlag
Metadata
Title
Atomistic Modelling of Nanocutting Processes
Authors
Francisco Rodriguez-Hernandez
Michail Papanikolaou
Konstantinos Salonitis
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-69472-2_8

Premium Partners