Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

08-06-2020 | Original Article | Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020

Attentive convolutional gated recurrent network: a contextual model to sentiment analysis

Journal:
International Journal of Machine Learning and Cybernetics > Issue 12/2020
Authors:
Olivier Habimana, Yuhua Li, Ruixuan Li, Xiwu Gu, Wenjin Yan
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Considering contextual features is a key issue in sentiment analysis. Existing approaches including convolutional neural networks (CNNs) and recurrent neural networks (RNNs) lack the ability to account and prioritize informative contextual features that are necessary for better sentiment interpretation. CNNs present limited capability since they are required to be very deep, which can lead to the gradient vanishing whereas, RNNs fail because they sequentially process input sequences. Furthermore, the two approaches treat all words equally. In this paper, we suggest a novel approach named attentive convolutional gated recurrent network (ACGRN) that alleviates the above issues for sentiment analysis. The motivation behind ACGRN is to avoid the vanishing gradient caused by deep CNN via applying a shallow-and-wide CNN that learns local contextual features. Afterwards, to solve the problem caused by the sequential structure of RNN and prioritizing informative contextual information, we use a novel prior knowledge attention based bidirectional gated recurrent unit (ATBiGRU). Prior knowledge ATBiGRU captures global contextual features with a strong focus on the previous hidden states that carry more valuable information to the current time step. The experimental results show that ACGRN significantly outperforms the baseline models over six small and large real-world datasets for the sentiment classification task.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020 Go to the issue