Skip to main content
Top

2016 | OriginalPaper | Chapter

Attribute Selection and Classification of Prostate Cancer Gene Expression Data Using Artificial Neural Networks

Authors : Sreenivas Sremath Tirumala, A. Narayanan

Published in: Trends and Applications in Knowledge Discovery and Data Mining

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Artificial Intelligence (AI) approaches for medical diagnosis and prediction of cancer are important and ever growing areas of research. Artificial Neural Networks (ANN) is one such approach that have been successfully applied in these areas. Various types of clinical datasets have been used in intelligent decision making systems for medical diagnosis, especially cancer for over three decades. However, gene expression datasets are complex with large numbers of attributes which make it more difficult for AI approaches to classification and prediction. Prostate Cancer dataset is one such dataset with 12600 attributes and only 102 samples. In this paper, we propose an extended ANN based approach for classification and prediction of prostate cancer using gene expression data. Firstly, we use four attribute selection approaches, namely Sequential Floating Forward Selection (SFFS), RELIEFF, Sequential Backward Feature Section (SFBS) and Significant Attribute Evaluation (SAE) to identify the most influential attributes among 12600. We use ANNs and Naive Bayes for classification with complete sets of attributes as well as various sets obtained from attribute selection methods. Experimental results show that ANN outperformed Naive Bayes by achieving a classification accuracy of 98.2 % compared to 62.74 % with the full set of attributes. Further, with 21 selected attributes obtained with SFFS, ANNs achieved better accuracy (100 %) for classification compared to Naive Bayes. For prediction using ANNs, SFFS was able achieve best results with 92.31 % of accuracy by correctly predicting 24 out of 26 samples provided for independent sample testing. Moreover, some of the gene selected by SFFS are identified to have a direct reference to cancer and tumour. Our results indicate that a combination of standard feature selection methods in conjunction with ANNs provide the most impressive results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Narayanan, A., Keedwell, E., Olsson, B.: Artificial intelligence techniques for bioinformatics. Appl. Bioinf. 1, 191–222 (2002) Narayanan, A., Keedwell, E., Olsson, B.: Artificial intelligence techniques for bioinformatics. Appl. Bioinf. 1, 191–222 (2002)
2.
go back to reference Baker, J.A., Kornguth, P.J., Lo, J.Y., Williford, M.E., Floyd Jr., C.E.: Breast cancer: prediction with artificial neural network based on bi-radsstandardized lexicon. Radiology 196(3), 817–822 (1995)CrossRef Baker, J.A., Kornguth, P.J., Lo, J.Y., Williford, M.E., Floyd Jr., C.E.: Breast cancer: prediction with artificial neural network based on bi-radsstandardized lexicon. Radiology 196(3), 817–822 (1995)CrossRef
3.
go back to reference Bottaci, L., Drew, P.J., Hartley, J.E., Hadfield, M.B., Farouk, R., Lee, P.W., Macintyre, I.M., Duthie, G.S., Monson, J.R.: Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet 350(9076), 469–472 (1997)CrossRef Bottaci, L., Drew, P.J., Hartley, J.E., Hadfield, M.B., Farouk, R., Lee, P.W., Macintyre, I.M., Duthie, G.S., Monson, J.R.: Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet 350(9076), 469–472 (1997)CrossRef
4.
go back to reference Zhou, Z.-H., Jiang, Y., Yang, Y.-B., Chen, S.-F.: Lung cancer cell identification based on artificial neural network ensembles. Artif. Intell. Med. 24(1), 25–36 (2002)CrossRef Zhou, Z.-H., Jiang, Y., Yang, Y.-B., Chen, S.-F.: Lung cancer cell identification based on artificial neural network ensembles. Artif. Intell. Med. 24(1), 25–36 (2002)CrossRef
5.
go back to reference Ahmed, F.E.: Artificial neural networks for diagnosis and survival prediction in colon cancer. Mol. Cancer 4(1), 29 (2005)CrossRef Ahmed, F.E.: Artificial neural networks for diagnosis and survival prediction in colon cancer. Mol. Cancer 4(1), 29 (2005)CrossRef
6.
go back to reference Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., et al.: Classification and diagnostic prediction of cancers using gene expressionprofiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)CrossRef Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., et al.: Classification and diagnostic prediction of cancers using gene expressionprofiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)CrossRef
7.
go back to reference Narayanan, A., Keedwell, E.C., Gamalielsson, J., Tatineni, S.: Single-layer artificial neural networks for gene expression analysis. Neurocomputing 61, 217–240 (2004)CrossRef Narayanan, A., Keedwell, E.C., Gamalielsson, J., Tatineni, S.: Single-layer artificial neural networks for gene expression analysis. Neurocomputing 61, 217–240 (2004)CrossRef
8.
go back to reference Snow, P.B., Smith, D.S., Catalona, W.J.: Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J. Urol. 152(5 Pt 2), 1923–1926 (1994) Snow, P.B., Smith, D.S., Catalona, W.J.: Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J. Urol. 152(5 Pt 2), 1923–1926 (1994)
9.
go back to reference Djavan, B., Remzi, M., Zlotta, A., Seitz, C., Snow, P., Marberger, M.: Novel artificial neural network for early detection of prostate cancer. J. Clin. Oncol. 20(4), 921–929 (2002)CrossRef Djavan, B., Remzi, M., Zlotta, A., Seitz, C., Snow, P., Marberger, M.: Novel artificial neural network for early detection of prostate cancer. J. Clin. Oncol. 20(4), 921–929 (2002)CrossRef
10.
go back to reference Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002)CrossRef Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002)CrossRef
11.
go back to reference Fakoor, R., Ladhak, F., Nazi, A., Huber, M.: Using deep learning to enhance cancer diagnosis and classification. In: Proceedings of the International Conference on Machine Learning (2013) Fakoor, R., Ladhak, F., Nazi, A., Huber, M.: Using deep learning to enhance cancer diagnosis and classification. In: Proceedings of the International Conference on Machine Learning (2013)
12.
go back to reference Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15, 1119–1125 (1994)CrossRef Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15, 1119–1125 (1994)CrossRef
13.
go back to reference Ververidis, D., Kotropoulos, C.: Sequential forward feature selection with low computational cost. In: 2005 13th European Signal Processing Conference, pp. 1–4. IEEE (2005) Ververidis, D., Kotropoulos, C.: Sequential forward feature selection with low computational cost. In: 2005 13th European Signal Processing Conference, pp. 1–4. IEEE (2005)
14.
go back to reference Kononenko, I., Simec, E., Robnik-Sikonja, M.: Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 7, 39–55 (1997)CrossRef Kononenko, I., Simec, E., Robnik-Sikonja, M.: Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 7, 39–55 (1997)CrossRef
15.
go back to reference Ahmad, A., Dey, L.: A feature selection technique for classificatory analysis. Pattern Recogn. Lett. 26(1), 43–56 (2005)CrossRef Ahmad, A., Dey, L.: A feature selection technique for classificatory analysis. Pattern Recogn. Lett. 26(1), 43–56 (2005)CrossRef
16.
go back to reference Tirumala, S.S., Narayanan, A.: Hierarchical data classification using deep neural networks. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9489, pp. 492–500. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26532-2_54 CrossRef Tirumala, S.S., Narayanan, A.: Hierarchical data classification using deep neural networks. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9489, pp. 492–500. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-26532-2_​54 CrossRef
17.
go back to reference Li, Y., Graham, C., Lacy, S., Duncan, A., Whyte, P.: The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev. 7(12a), 2366–2377 (1993)CrossRef Li, Y., Graham, C., Lacy, S., Duncan, A., Whyte, P.: The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev. 7(12a), 2366–2377 (1993)CrossRef
Metadata
Title
Attribute Selection and Classification of Prostate Cancer Gene Expression Data Using Artificial Neural Networks
Authors
Sreenivas Sremath Tirumala
A. Narayanan
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-42996-0_3

Premium Partner