Skip to main content
Top
Published in: Journal of Computational Neuroscience 3/2011

01-06-2011

Auditory information coding by modeled cochlear nucleus neurons

Authors: Huan Wang, Michael Isik, Alexander Borst, Werner Hemmert

Published in: Journal of Computational Neuroscience | Issue 3/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we use information theory to quantify the information in the output spike trains of modeled cochlear nucleus globular bushy cells (GBCs). GBCs are part of the sound localization pathway. They are known for their precise temporal processing, and they code amplitude modulations with high fidelity. Here we investigated the information transmission for a natural sound, a recorded vowel. We conclude that the maximum information transmission rate for a single neuron was close to 1,050 bits/s, which corresponds to a value of approximately 5.8 bits per spike. For quasi-periodic signals like voiced speech, the transmitted information saturated as word duration increased. In general, approximately 80% of the available information from the spike trains was transmitted within about 20 ms. Transmitted information for speech signals concentrated around formant frequency regions. The efficiency of neural coding was above 60% up to the highest temporal resolution we investigated (20 μs). The increase in transmitted information to that precision indicates that these neurons are able to code information with extremely high fidelity, which is required for sound localization. On the other hand, only 20% of the information was captured when the temporal resolution was reduced to 4 ms. As the temporal resolution of most speech recognition systems is limited to less than 10 ms, this massive information loss might be one of the reasons which are responsible for the lack of noise robustness of these systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
In the case of very long bins, we sometimes counted two spikes in a bin, which we evaluated with “2”.
 
2
Data processing inequality: If XYZ form a Markov chain which means X and Z are independent given Y, then I(X;Y) ≥ I(X;Z) (Cover and Thomas 1991).
 
Literature
go back to reference Adrian, E. D. (1928). The basis of sensation: The action of the sense organs. London: Christophers; New York: Norton. Adrian, E. D. (1928). The basis of sensation: The action of the sense organs. London: Christophers; New York: Norton.
go back to reference Attneave, F. (1954). Some information aspects of visual perception. Psychological Review, 61, 183–193.PubMedCrossRef Attneave, F. (1954). Some information aspects of visual perception. Psychological Review, 61, 183–193.PubMedCrossRef
go back to reference Blauert, J. (1974). Räumliches Hören. Hirzel Verlag Stuttgart. Blauert, J. (1974). Räumliches Hören. Hirzel Verlag Stuttgart.
go back to reference Borst, A., & Theunissen, F. (1999). Information theory and neural coding. Nature Neuroscience, 2, 947–957.PubMedCrossRef Borst, A., & Theunissen, F. (1999). Information theory and neural coding. Nature Neuroscience, 2, 947–957.PubMedCrossRef
go back to reference Cover, T., & Thomas, J. (1991). Elements of information theory. Wiley-Interscience. Cover, T., & Thomas, J. (1991). Elements of information theory. Wiley-Interscience.
go back to reference Hemmert, W., Holmberg, M., & Ramacher, U. (2005). Temporal sound processing by cochlea nucleus octopus neurons. In Proc. ICANN 2005, LNCS 3696 (pp. 583–588). Berlin: Springer. Hemmert, W., Holmberg, M., & Ramacher, U. (2005). Temporal sound processing by cochlea nucleus octopus neurons. In Proc. ICANN 2005, LNCS 3696 (pp. 583–588). Berlin: Springer.
go back to reference Holmberg, M. (2007). Speech encoding in the human auditory periphery: Modeling and quantitative assessment by means of automatic speech recognition. Ph.D. thesis, Technical University Darmstadt, Darmstadt, Germany. Holmberg, M. (2007). Speech encoding in the human auditory periphery: Modeling and quantitative assessment by means of automatic speech recognition. Ph.D. thesis, Technical University Darmstadt, Darmstadt, Germany.
go back to reference Holmberg, M., Gelbart, D., & Hemmert, W. (2007). Speech encoding in a model of peripheral auditory processing: Quantitative assessment by means of automatic speech recognition. Speech Communication, 49, 917–932.CrossRef Holmberg, M., Gelbart, D., & Hemmert, W. (2007). Speech encoding in a model of peripheral auditory processing: Quantitative assessment by means of automatic speech recognition. Speech Communication, 49, 917–932.CrossRef
go back to reference Holmberg, M., & Hemmert, W. (2004). An auditory model for coding speech into nerve-action potentials. In Proc. Joint Congress CFA/DAGA’04 (pp. 773–774). Strasbourg, France. Holmberg, M., & Hemmert, W. (2004). An auditory model for coding speech into nerve-action potentials. In Proc. Joint Congress CFA/DAGA’04 (pp. 773–774). Strasbourg, France.
go back to reference Kiang, N. Y. S., Watanabe, T., Thomas, E. C., & Clark, L. F. (1965). Discharge patterns of single fibers in the cat’s auditory nerve. Technical report, Massachusetts Institute of Technology, Cambridge, MIT University Press. Kiang, N. Y. S., Watanabe, T., Thomas, E. C., & Clark, L. F. (1965). Discharge patterns of single fibers in the cat’s auditory nerve. Technical report, Massachusetts Institute of Technology, Cambridge, MIT University Press.
go back to reference Lopez-Poveda, E. A., Plack, C. J., & Meddis, R. (2003). Cochlear nonlinearity between 500 and 8,000 Hz in listeners with normal hearing. Journal of the Acoustical Society of America, 113, 951–960.PubMedCrossRef Lopez-Poveda, E. A., Plack, C. J., & Meddis, R. (2003). Cochlear nonlinearity between 500 and 8,000 Hz in listeners with normal hearing. Journal of the Acoustical Society of America, 113, 951–960.PubMedCrossRef
go back to reference Meddis, R. (1986). Simulation of mechanical to neural transduction in the auditory receptor. Journal of the Acoustical Society of America, 79(3), 702–711.PubMedCrossRef Meddis, R. (1986). Simulation of mechanical to neural transduction in the auditory receptor. Journal of the Acoustical Society of America, 79(3), 702–711.PubMedCrossRef
go back to reference Pichora-Fuller, M. K., Schneider, B. A., MacDonald, E., Pass, H. E., & Brown, S. (2007). Temporal jitter disrupts speech intelligibility: A simulation of auditory aging. Hearing Research, 223, 114–121.PubMedCrossRef Pichora-Fuller, M. K., Schneider, B. A., MacDonald, E., Pass, H. E., & Brown, S. (2007). Temporal jitter disrupts speech intelligibility: A simulation of auditory aging. Hearing Research, 223, 114–121.PubMedCrossRef
go back to reference Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes, exploring the neural code. Cambridge: MIT. Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes, exploring the neural code. Cambridge: MIT.
go back to reference Rothman, J. S., & Manis, P. B. (2003). The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. Journal of Neurophysiology, 89, 3097–3113.PubMedCrossRef Rothman, J. S., & Manis, P. B. (2003). The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. Journal of Neurophysiology, 89, 3097–3113.PubMedCrossRef
go back to reference Shannon, C. E. (1948). A mathematical theory of communication. The Bell Systems Technical Journal, 27, 379–423, 623–656. Shannon, C. E. (1948). A mathematical theory of communication. The Bell Systems Technical Journal, 27, 379–423, 623–656.
go back to reference Shera, C. A., Guinan, Jr., J. J., & Oxenham, A. J. (2002). Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3318–3323.PubMedCrossRef Shera, C. A., Guinan, Jr., J. J., & Oxenham, A. J. (2002). Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3318–3323.PubMedCrossRef
go back to reference Spirou, G., Rager, J., & Manis, P. (2005). Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience, 136(3), 843–863.PubMedCrossRef Spirou, G., Rager, J., & Manis, P. (2005). Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience, 136(3), 843–863.PubMedCrossRef
go back to reference Strong, S. P., de Ruyter van Steveninck, R., Bialek, W., & Koberle, R. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80, 197–200.CrossRef Strong, S. P., de Ruyter van Steveninck, R., Bialek, W., & Koberle, R. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80, 197–200.CrossRef
go back to reference Strube, H. W. (1985). A computionally efficient basilar-membrane model. Acustica, 58, 207–214. Strube, H. W. (1985). A computionally efficient basilar-membrane model. Acustica, 58, 207–214.
go back to reference Sumner, C. J., Lopez-Poveda, E. A., O’Mard, L. P., & Meddis, R. (2002). A revised model of the inner-hair cell and auditory-nerve complex. Journal of the Acoustical Society of America, 111, 2178–2188.PubMedCrossRef Sumner, C. J., Lopez-Poveda, E. A., O’Mard, L. P., & Meddis, R. (2002). A revised model of the inner-hair cell and auditory-nerve complex. Journal of the Acoustical Society of America, 111, 2178–2188.PubMedCrossRef
go back to reference von Helmholtz, H. L. F. (1863). Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. In F. Vieweg & S. Braunschweig (Eds.), Published in translation (1954) On the sensations of tone as a physiological basis for the theory of music (6th ed., Vol. 1913, 668 pp.) New York: Dover. von Helmholtz, H. L. F. (1863). Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. In F. Vieweg & S. Braunschweig (Eds.), Published in translation (1954) On the sensations of tone as a physiological basis for the theory of music (6th ed., Vol. 1913, 668 pp.) New York: Dover.
go back to reference Wang, H., Gelbart, D., Hirsch, H. G., & Hemmert, W. (2008). The value of auditory offset adaptation and appropriate acoustic modeling. In Interspeech, proceedings of the 9th annual conference of the international speech communication association (pp. 902–905). ISSN 1990-9772. Wang, H., Gelbart, D., Hirsch, H. G., & Hemmert, W. (2008). The value of auditory offset adaptation and appropriate acoustic modeling. In Interspeech, proceedings of the 9th annual conference of the international speech communication association (pp. 902–905). ISSN 1990-9772.
go back to reference Wang, H., & Hemmert, W. (2007). Speech coding and information processing by auditory neurons. In Interspeech, proceedings of the 8th annual conference of the international speech communication association (pp. 426–429). ISSN 1990-9772. Wang, H., & Hemmert, W. (2007). Speech coding and information processing by auditory neurons. In Interspeech, proceedings of the 8th annual conference of the international speech communication association (pp. 426–429). ISSN 1990-9772.
go back to reference Wang, H., Holmberg, M., & Hemmert, W. (2006). Auditory information coding by cochlear nucleus onset neurons. In Proc. IEEE ICASSP’2006 (pp. 129–132). Toulouse, France. Wang, H., Holmberg, M., & Hemmert, W. (2006). Auditory information coding by cochlear nucleus onset neurons. In Proc. IEEE ICASSP’2006 (pp. 129–132). Toulouse, France.
go back to reference Yu, Y., Liu, F., Wang, W., & Lee, T. S. (2004). Optimal synchrony state for maximal information transmission. NeuroReport, 15, 1605–1610.PubMedCrossRef Yu, Y., Liu, F., Wang, W., & Lee, T. S. (2004). Optimal synchrony state for maximal information transmission. NeuroReport, 15, 1605–1610.PubMedCrossRef
go back to reference Zhang, X., & Carney, L. H. (2005). Analysis of models for the synapse between the inner hair cell and the auditory nerve. Journal of the Acoustical Society of America, 118, 1540–1553.PubMedCrossRef Zhang, X., & Carney, L. H. (2005). Analysis of models for the synapse between the inner hair cell and the auditory nerve. Journal of the Acoustical Society of America, 118, 1540–1553.PubMedCrossRef
Metadata
Title
Auditory information coding by modeled cochlear nucleus neurons
Authors
Huan Wang
Michael Isik
Alexander Borst
Werner Hemmert
Publication date
01-06-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 3/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0276-x

Other articles of this Issue 3/2011

Journal of Computational Neuroscience 3/2011 Go to the issue

Premium Partner