Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2017 | OriginalPaper | Chapter

9. Auf Nanostrukturen beruhende innovative elektronische Bauelemente

Authors : Heinz-Christoph Neitzert, Ulrich Hilleringmann, Wolfgang R. Fahrner

Published in: Nanotechnologie und Nanoprozesse

Publisher: Springer Berlin Heidelberg

share
SHARE

Zusammenfassung

Eine strenge Definition des Begriffs „nanoelektronisches Bauelement“ existiert bis heute nicht. Im Allgemeinen versteht man darunter jedoch elektronische Bauelemente, bei denen zumindest in einer örtlichen Dimension die Abmessungen einer „entscheidenden“ Komponente im Nanometerbereich liegen. Die Relativität dieser Definition kann man zum Beispiel anhand der Weiterentwicklung der Silizium-MOS-Technologie erläutern. Seit den frühen Anfängen dieser Technologie hat die Schichtdicke des Gate-Isolators Abmessungen im Nanometerbereich (1980 ca. 100 nm, heutzutage unter 3 nm). Vom MOS-Transistor als nanoelektronisches Bauelement spricht man aber erst, seitdem die Kanallänge Abmessungen unter 100 nm besitzt. Im Falle des Quantenpunktlasers überschreiten die Bauelementdimensionen in allen drei Raumrichtungen die Nanometerskala. Allerdings haben in diesem Fall die in die aktive Schicht eingebetteten Quantenpunkte, in welchen der für das Funktionieren des Lasers entscheidende Prozess der strahlenden Rekombination stattfindet, Nanometerdimensionen. Unter Anwendung der oben angegebenen Definition sind im Prinzip auch alle Quanteneffekt-Bauelemente als nanoelektronische Bauelemente zu bezeichnen. Im vorliegenden Kapitel beschränken wir uns hingegen auf elektronische Bauelemente, welche auf Nanoteilchen als aktives Material basiert sind. Während bei Drucklegung der ersten Ausgabe dieses Buches im Jahre 2003 die „elektronische Nanowelt“ noch gut überschaubar war, hat die Vielfalt auf diesem Gebiet in den letzten 12 Jahren zu sehr zugenommen, um hier komplett dargestellt werden zu können. Deshalb werden wir uns hier auf die Anwendungen von Kohlenstoffnanoröhren (CNTs) in elektronischen Bauelementen beschränken, und nicht die ganze Vielfalt der Bauelemente, basierend auf anderen Nanomaterialien, z. B. Graphen, Fulleren, Silizium-Nanodrähten, MoS2, etc. darzustellen.
Literature
1.
go back to reference Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors – a review. IEEE Sens J 7:266–284 CrossRef Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors – a review. IEEE Sens J 7:266–284 CrossRef
2.
go back to reference Dillon AC (2010) Carbon nanotubes for photoconversion and electrical energy storage. Chem Rev 110:6856–6872 CrossRef Dillon AC (2010) Carbon nanotubes for photoconversion and electrical energy storage. Chem Rev 110:6856–6872 CrossRef
3.
go back to reference Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, posttreatment, and bulk applications for composites and energy storage. Small 9:1237–1265 CrossRef Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, posttreatment, and bulk applications for composites and energy storage. Small 9:1237–1265 CrossRef
4.
go back to reference Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52 CrossRef Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52 CrossRef
5.
go back to reference Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449 CrossRef Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449 CrossRef
6.
go back to reference Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320 CrossRef Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320 CrossRef
7.
go back to reference Inami N, Mohamed MA, Ehikoh E, Fujiwara A (2008) Device characteristics of carbon nanotube transistor fabricated by direct growth method. Appl Phys Lett 92:243115 CrossRef Inami N, Mohamed MA, Ehikoh E, Fujiwara A (2008) Device characteristics of carbon nanotube transistor fabricated by direct growth method. Appl Phys Lett 92:243115 CrossRef
8.
go back to reference Dresselhaus MS, Dresselhaus G, Avouris P (Hrsg) (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer Dresselhaus MS, Dresselhaus G, Avouris P (Hrsg) (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer
9.
go back to reference Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5:443–450 CrossRef Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5:443–450 CrossRef
10.
go back to reference Wang C, Qian L, Xu W, Nie S, Gu W, Zhang J, Zhao J, Lin J, Chena Z, Cui Z (2013) High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes. Nanoscale 5:4156–4161 CrossRef Wang C, Qian L, Xu W, Nie S, Gu W, Zhang J, Zhao J, Lin J, Chena Z, Cui Z (2013) High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes. Nanoscale 5:4156–4161 CrossRef
11.
go back to reference Brady GJ, Joo Y, Roy SS, Gopalan P, Arnold MS (2014) High performance transistors via aligned polyfluorene-sorted carbon nanotubes transistors. Appl Phys Lett 104:083107 CrossRef Brady GJ, Joo Y, Roy SS, Gopalan P, Arnold MS (2014) High performance transistors via aligned polyfluorene-sorted carbon nanotubes transistors. Appl Phys Lett 104:083107 CrossRef
12.
go back to reference Czerw R, Terrones M, Charlier J-C, Blasé X, Foley B, Kamalakaran R, Grobert N, Terrones H, Ajayan PM, Blau W, Tekleab D, Rühle M, Carroll DL (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 9:457–460 CrossRef Czerw R, Terrones M, Charlier J-C, Blasé X, Foley B, Kamalakaran R, Grobert N, Terrones H, Ajayan PM, Blau W, Tekleab D, Rühle M, Carroll DL (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 9:457–460 CrossRef
13.
go back to reference Kaminishi D, Ozaki H, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2005) Air-stable n-type carbon nanotube field-effect transistors with Si 3N 4 passivation films fabricated by catalytic chemical vapor deposition. Appl Phys Lett 86:113115 CrossRef Kaminishi D, Ozaki H, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2005) Air-stable n-type carbon nanotube field-effect transistors with Si 3N 4 passivation films fabricated by catalytic chemical vapor deposition. Appl Phys Lett 86:113115 CrossRef
14.
go back to reference Zhang Z, Wang S, Ding L, Liang X, Pei T, Shen J, Xu H, Chen Q, Cui R, Li Y, Peng L-M (2008) Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett 8:3696–3701 CrossRef Zhang Z, Wang S, Ding L, Liang X, Pei T, Shen J, Xu H, Chen Q, Cui R, Li Y, Peng L-M (2008) Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett 8:3696–3701 CrossRef
16.
go back to reference Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, Wong H-SP, Mitra S (2013) Carbon nanotube computer. Nature 501:526–530 CrossRef Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, Wong H-SP, Mitra S (2013) Carbon nanotube computer. Nature 501:526–530 CrossRef
17.
go back to reference Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12:758–762 CrossRef Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12:758–762 CrossRef
18.
go back to reference Leonard F, Steward DA (2006) Properties of short channel ballistic carbon nanotube transistors with ohmic contacts. Nanotechnology 17:4699–4705 CrossRef Leonard F, Steward DA (2006) Properties of short channel ballistic carbon nanotube transistors with ohmic contacts. Nanotechnology 17:4699–4705 CrossRef
19.
go back to reference Franklin AD, Koswatta SO, Farmer DB, Smith JT, Gignac L, Breslin CM, Han SJ, Tulevski GS, Miyazoe H, Haensch W, Tersoff J (2013) Carbon nanotube complementary wrap-gate transistors. Nano Lett 13:2090–2095 CrossRef Franklin AD, Koswatta SO, Farmer DB, Smith JT, Gignac L, Breslin CM, Han SJ, Tulevski GS, Miyazoe H, Haensch W, Tersoff J (2013) Carbon nanotube complementary wrap-gate transistors. Nano Lett 13:2090–2095 CrossRef
20.
go back to reference Xue W, Cui T (2009) Thin-film transistors with controllable mobilities based on layer-by-layer self-assembled carbon nanotube composites. Solid-State Electron 53:1050–1055 CrossRef Xue W, Cui T (2009) Thin-film transistors with controllable mobilities based on layer-by-layer self-assembled carbon nanotube composites. Solid-State Electron 53:1050–1055 CrossRef
21.
go back to reference Sajed F, Rutherglen C (2013) All-printed and transparent single walled carbon nanotube thin film transistor devices. Appl Phys Lett 103:143303 CrossRef Sajed F, Rutherglen C (2013) All-printed and transparent single walled carbon nanotube thin film transistor devices. Appl Phys Lett 103:143303 CrossRef
22.
go back to reference Alam K, Lake R (2005) Performance of 2 nm gate length carbon nanotube field-effect transistors with source/drain underlaps. Appl Phys Lett 87:073104 CrossRef Alam K, Lake R (2005) Performance of 2 nm gate length carbon nanotube field-effect transistors with source/drain underlaps. Appl Phys Lett 87:073104 CrossRef
23.
go back to reference Le Louarn A, Kapche F, Bethoux J-M, Happy H, Dambrine G, Derycke V, Chenevier P, Izard N, Goffman MF, Bourgoin J-P (2007) Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl Phys Lett 90:233108 CrossRef Le Louarn A, Kapche F, Bethoux J-M, Happy H, Dambrine G, Derycke V, Chenevier P, Izard N, Goffman MF, Bourgoin J-P (2007) Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl Phys Lett 90:233108 CrossRef
24.
go back to reference Kang WP, Wong YM, Davidson JL, Kerns DV, Choi BK, Huang JH, Galloway KF (2006) Carbon nanotubes vacuum field emission differential amplifier integrated circuits. Electron Lett 42:210–211 CrossRef Kang WP, Wong YM, Davidson JL, Kerns DV, Choi BK, Huang JH, Galloway KF (2006) Carbon nanotubes vacuum field emission differential amplifier integrated circuits. Electron Lett 42:210–211 CrossRef
25.
go back to reference Neitzert HC, Spinillo P, Bellone S, Licciardo GD, Tucci M, Roca F, Gialanella L, Romano M (2004) Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cell. Sol Energy Mater Sol Cells 83:435–446 CrossRef Neitzert HC, Spinillo P, Bellone S, Licciardo GD, Tucci M, Roca F, Gialanella L, Romano M (2004) Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cell. Sol Energy Mater Sol Cells 83:435–446 CrossRef
26.
go back to reference Wei BQ, Vajtai R, Choi YY, Ajayan PM, Zhu HW, Xu CL, Wu DH (2002) Structural characterizations of long single-walled carbon nanotube strands. Nano Lett 2:1105–1107 CrossRef Wei BQ, Vajtai R, Choi YY, Ajayan PM, Zhu HW, Xu CL, Wu DH (2002) Structural characterizations of long single-walled carbon nanotube strands. Nano Lett 2:1105–1107 CrossRef
27.
go back to reference Wei J, Zhu H, Wu D, Wei B (2004) Carbon nanotube filaments in household light bulbs. Appl Phys Lett 84:4869–4871 CrossRef Wei J, Zhu H, Wu D, Wei B (2004) Carbon nanotube filaments in household light bulbs. Appl Phys Lett 84:4869–4871 CrossRef
28.
go back to reference Yu D, Dai L (2010) Voltage-induced incandescent light emission from large-area graphene films. Appl Phys Lett 96:143107 CrossRef Yu D, Dai L (2010) Voltage-induced incandescent light emission from large-area graphene films. Appl Phys Lett 96:143107 CrossRef
29.
go back to reference Misewich JA, Martel R, Avouris P, Tsang JC, Heinze S, Tersoff J (2003) Electrically induced optical emission from a carbon nanotube FET. Science 300:783–786 CrossRef Misewich JA, Martel R, Avouris P, Tsang JC, Heinze S, Tersoff J (2003) Electrically induced optical emission from a carbon nanotube FET. Science 300:783–786 CrossRef
30.
go back to reference Adam E, Aguirre CM, Marty L, St-Antoine BC, Meunier F, Desjardins P, Ménard D, Martel R (2008) Electroluminescence from single-wall carbon nanotube network transistors. Nano Lett 8:2351–2355 CrossRef Adam E, Aguirre CM, Marty L, St-Antoine BC, Meunier F, Desjardins P, Ménard D, Martel R (2008) Electroluminescence from single-wall carbon nanotube network transistors. Nano Lett 8:2351–2355 CrossRef
31.
go back to reference Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309 CrossRef Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309 CrossRef
32.
go back to reference Yu D, Liu H, Peng L-M, Wang S (2015) Flexible light-emitting devices based on chirality-sorted semiconducting carbon nanotube films. ACS Appl Mater Interfaces 7:3462–3467 CrossRef Yu D, Liu H, Peng L-M, Wang S (2015) Flexible light-emitting devices based on chirality-sorted semiconducting carbon nanotube films. ACS Appl Mater Interfaces 7:3462–3467 CrossRef
33.
go back to reference Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87:073101 CrossRef Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87:073101 CrossRef
34.
go back to reference Chen C, Zhang W, Kong ES-W, Zhang Y (2009) Carbon nanotube photovoltaic device with asymmetrical contacts. Appl Phys Lett 94:263501 CrossRef Chen C, Zhang W, Kong ES-W, Zhang Y (2009) Carbon nanotube photovoltaic device with asymmetrical contacts. Appl Phys Lett 94:263501 CrossRef
35.
go back to reference Marcus MS, Simmons JM, Castellini OM, Hamers RJ, Eriksson MA (2006) Photogating carbon nanotube transistors. J Appl Phys 100:084306 CrossRef Marcus MS, Simmons JM, Castellini OM, Hamers RJ, Eriksson MA (2006) Photogating carbon nanotube transistors. J Appl Phys 100:084306 CrossRef
36.
go back to reference Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K (2009) A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci USA 106:604–6047 CrossRef Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K (2009) A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci USA 106:604–6047 CrossRef
37.
go back to reference Hu L, Hecht DS, Grüner G (2009) Infrared transparent carbon nanotube thin films. Appl Phys Lett 94:081103 CrossRef Hu L, Hecht DS, Grüner G (2009) Infrared transparent carbon nanotube thin films. Appl Phys Lett 94:081103 CrossRef
38.
go back to reference Aguirre CM, Auvray S, Pigeon S, Izquierdo R, Desjardins P, Martel R (2006) Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl Phys Lett 88:183104 CrossRef Aguirre CM, Auvray S, Pigeon S, Izquierdo R, Desjardins P, Martel R (2006) Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl Phys Lett 88:183104 CrossRef
39.
go back to reference Ulbricht R, Lee SB, Jiang X, Inoue K, Zhang M, Fang S, Baughman RH, Zakhidov AA (2007) Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells. Sol Energy Mater Sol Cells 91:416–419 CrossRef Ulbricht R, Lee SB, Jiang X, Inoue K, Zhang M, Fang S, Baughman RH, Zakhidov AA (2007) Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells. Sol Energy Mater Sol Cells 91:416–419 CrossRef
40.
go back to reference Schwertheim S, Leinhos M, Müller T, Fahrner WR, Neitzert HC (2008) PEDOT with carbon nanotubes as a replacement for the transparent conductive coating (ITO) of a heterojunction solar cell. In: Proceedings of the 33rd IEEE photovoltaic specialist conference, San Diego, S 308–312 Schwertheim S, Leinhos M, Müller T, Fahrner WR, Neitzert HC (2008) PEDOT with carbon nanotubes as a replacement for the transparent conductive coating (ITO) of a heterojunction solar cell. In: Proceedings of the 33rd IEEE photovoltaic specialist conference, San Diego, S 308–312
41.
go back to reference Cho D-Y, Eun K, Choa S-H, Kim H-K (2014) Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells. Carbon 66:530–538 CrossRef Cho D-Y, Eun K, Choa S-H, Kim H-K (2014) Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells. Carbon 66:530–538 CrossRef
42.
go back to reference Li H, Loke WK, Zhang Q, Yoon SF (2010) Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Appl Phys Lett 96:043501 CrossRef Li H, Loke WK, Zhang Q, Yoon SF (2010) Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Appl Phys Lett 96:043501 CrossRef
43.
go back to reference Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S (2015) Achievement of more than 25 % conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovoltaics 4:1433–1435 CrossRef Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S (2015) Achievement of more than 25 % conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovoltaics 4:1433–1435 CrossRef
44.
go back to reference Neitzert HC, Hirsch W, Swiatkowski C, Kunst M (1990) In-situ investigation of optoelectronic properties of crystalline silicon/amorphous silicon heterojunctions. In: Matsunami H, Kyoto (Hrsg) Proceedings of the 5th international photovoltaic science and engineering conference, S 825–827 Neitzert HC, Hirsch W, Swiatkowski C, Kunst M (1990) In-situ investigation of optoelectronic properties of crystalline silicon/amorphous silicon heterojunctions. In: Matsunami H, Kyoto (Hrsg) Proceedings of the 5th international photovoltaic science and engineering conference, S 825–827
45.
go back to reference Neitzert HC, Hirsch W, Kunst M (1993) Structural changes of a-Si:H films on crystalline silicon substrates during deposition. Phys Rev B 47:4080–4083 CrossRef Neitzert HC, Hirsch W, Kunst M (1993) Structural changes of a-Si:H films on crystalline silicon substrates during deposition. Phys Rev B 47:4080–4083 CrossRef
46.
go back to reference Fahrner WR, Mueller T, Schwertheim S, Wuensch F, Neitzert HC, Huang H (2013) Amorphous silicon/crystalline silicon heterojunction solar cells. Springer, Berlin CrossRef Fahrner WR, Mueller T, Schwertheim S, Wuensch F, Neitzert HC, Huang H (2013) Amorphous silicon/crystalline silicon heterojunction solar cells. Springer, Berlin CrossRef
47.
go back to reference Wang W, Schiff EA (2007) Polyaniline on crystalline silicon heterojunction solar cells. Appl Phys Lett 91:133504 CrossRef Wang W, Schiff EA (2007) Polyaniline on crystalline silicon heterojunction solar cells. Appl Phys Lett 91:133504 CrossRef
48.
go back to reference Jia Y, Wei J, Wang K, Cao A, Shu A, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L, Liu W, Wang Z, Luo J, Wu D (2008) Nanotube-silicon heterojunction solar cells. Adv Mater 20:4594–4598 CrossRef Jia Y, Wei J, Wang K, Cao A, Shu A, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L, Liu W, Wang Z, Luo J, Wu D (2008) Nanotube-silicon heterojunction solar cells. Adv Mater 20:4594–4598 CrossRef
49.
go back to reference Neitzert HC, Schwertheim S, Meusinger K, Leinhos M, Fahrner WR (2009) Heterojunction solar cell fabricated by spin-coating of a CNT/PEDOT: PSS heteroemitter on top of a crystalline silicon absorber. Nanotechnology IV. SPIE Proc 7364:73460 L-1–73460 L-7 Neitzert HC, Schwertheim S, Meusinger K, Leinhos M, Fahrner WR (2009) Heterojunction solar cell fabricated by spin-coating of a CNT/PEDOT: PSS heteroemitter on top of a crystalline silicon absorber. Nanotechnology IV. SPIE Proc 7364:73460 L-1–73460 L-7
50.
go back to reference Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett 13:95–99 CrossRef Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett 13:95–99 CrossRef
51.
go back to reference Wolff K (2011) Integrationstechniken für Feldeffekttransistoren mit halbleitenden Nanopartikeln. Vieweg-Teubner, Wiesbaden CrossRef Wolff K (2011) Integrationstechniken für Feldeffekttransistoren mit halbleitenden Nanopartikeln. Vieweg-Teubner, Wiesbaden CrossRef
53.
go back to reference Hilleringmann U, Wolff K, Assion F, Vidor FF, Wirth GI (2011) Semiconductor nanoparticles for electronic device integration on foils, Africon, ISSN 2153–0025, NF-001074, S 6 Hilleringmann U, Wolff K, Assion F, Vidor FF, Wirth GI (2011) Semiconductor nanoparticles for electronic device integration on foils, Africon, ISSN 2153–0025, NF-001074, S 6
54.
go back to reference Sun B, Sirringhaus H (2005) Solution-processed zinc oxide filed-effect transistors based on self-assembly of colloidal nanorods. Nano Lett 5:2408–2413 CrossRef Sun B, Sirringhaus H (2005) Solution-processed zinc oxide filed-effect transistors based on self-assembly of colloidal nanorods. Nano Lett 5:2408–2413 CrossRef
55.
go back to reference Fleischhaker F, Wloka V, Hennig I (2010) ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates. J Mater Chem 20:6622–6625 CrossRef Fleischhaker F, Wloka V, Hennig I (2010) ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates. J Mater Chem 20:6622–6625 CrossRef
56.
go back to reference Lee HS, Choo JD, Han HS, Kim HJ, Son RY, Jang J (2007) High performance organic thin-film transistors with photopatterned gate dielectric. Appl Phys Lett 90(3):033502–033503 CrossRef Lee HS, Choo JD, Han HS, Kim HJ, Son RY, Jang J (2007) High performance organic thin-film transistors with photopatterned gate dielectric. Appl Phys Lett 90(3):033502–033503 CrossRef
57.
go back to reference Vidor F, Wirth G, Assion F, Wolff K, Hilleringmann U (2013) Characterization and analysis of the hysteresis in a ZnO nanoparticle thin-film transistor. IEEE Trans Nanotechnol 12:296–303 CrossRef Vidor F, Wirth G, Assion F, Wolff K, Hilleringmann U (2013) Characterization and analysis of the hysteresis in a ZnO nanoparticle thin-film transistor. IEEE Trans Nanotechnol 12:296–303 CrossRef
58.
go back to reference Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793 CrossRef Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793 CrossRef
59.
go back to reference Paetzold UW (2013) Light trapping with plasmonic back contacts in thin-film silicon solar cells. PhD thesis. Forschungszentrum Jülich Paetzold UW (2013) Light trapping with plasmonic back contacts in thin-film silicon solar cells. PhD thesis. Forschungszentrum Jülich
60.
go back to reference Fahrner WR, Zhou L, Huang H (2013) A method for fabrication of plasmons for the enhancement of the solar cell efficiency, application date: 23.04.2013, publication date: 20.11.2013, pending (Application number: 201310141060.0, Publication number: CN103400883A) Fahrner WR, Zhou L, Huang H (2013) A method for fabrication of plasmons for the enhancement of the solar cell efficiency, application date: 23.04.2013, publication date: 20.11.2013, pending (Application number: 201310141060.0, Publication number: CN103400883A)
Metadata
Title
Auf Nanostrukturen beruhende innovative elektronische Bauelemente
Authors
Heinz-Christoph Neitzert
Ulrich Hilleringmann
Wolfgang R. Fahrner
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-48908-6_9