Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

20-06-2020 | Issue 4/2020

Cognitive Computation 4/2020

Autism AI: a New Autism Screening System Based on Artificial Intelligence

Journal:
Cognitive Computation > Issue 4/2020
Authors:
Seyed Reza Shahamiri, Fadi Thabtah
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Autistic spectrum disorder (ASD) is a neurodevelopment condition normally linked with substantial healthcare costs and time-consuming assessments where early detection of ASD traits can help limit the development of the condition. The existing conventional ASD screening methods contain a large number of items and are based on domain expert rules which may be criticized of being lengthy and subjective. More importantly, these methods use basic scoring functions to pinpoint to autistic traits rather intelligently learning patterns from cases and controls which can be more accurate and efficient. One promising solution to deal with the above issues and speed up ASD assessment referrals is to develop intelligent artificial intelligence screening methods that not only provide accurate pre-diagnostic classifications but also improve the efficiency and accessibility of the screening process. This paper proposes a new autism screening system that replaces the conventional scoring functions in classic screening methods with deep learning algorithms. The system is composed of a mobile application that provides the user interface capturing questionnaire data; an intelligent ASD detection web service that interfaces with a Convolutional Neural Network (CNN) trained with historical ASD cases; and a database that enables the CNN to learn new knowledge from future users of the system. The CNN classification method was evaluated against a large autism dataset consisting of adult, adolescent, child, and toddler cases and controls. The results obtained from the CNN were compared with other intelligent algorithms in which superior performance was achieved by the CNN. Particularly, the proposed CNN-based ASD classification system revealed higher accuracy, sensitivity, and specificity when compared with conventional screening methods. This indeed will be of high benefit for busy medical clinics and diagnosticians and could possibly be a new direction to change the way ASD diagnosis process is conducted in the future.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2020

Cognitive Computation 4/2020 Go to the issue

Premium Partner

    Image Credits