Skip to main content
Top

2019 | OriginalPaper | Chapter

Auto-labelling of Markers in Optical Motion Capture by Permutation Learning

Authors : Saeed Ghorbani, Ali Etemad, Nikolaus F. Troje

Published in: Advances in Computer Graphics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Optical marker-based motion capture is a vital tool in applications such as motion and behavioural analysis, animation, and biomechanics. Labelling, that is, assigning optical markers to the pre-defined positions on the body, is a time consuming and labour intensive post-processing part of current motion capture pipelines. The problem can be considered as a ranking process in which markers shuffled by an unknown permutation matrix are sorted to recover the correct order. In this paper, we present a framework for automatic marker labelling which first estimates a permutation matrix for each individual frame using a differentiable permutation learning model and then utilizes temporal consistency to identify and correct remaining labelling errors. Experiments conducted on the test data show the effectiveness of our framework.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adams, R.P., Zemel, R.S.: Ranking via Sinkhorn propagation. ArXiv, pp. 1106–1925 (2011) Adams, R.P., Zemel, R.S.: Ranking via Sinkhorn propagation. ArXiv, pp. 1106–1925 (2011)
2.
go back to reference Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)MathSciNetMATH Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)MathSciNetMATH
3.
go back to reference Birkhoff, G.: Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser. A 5, 147–151 (1946)MathSciNetMATH Birkhoff, G.: Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser. A 5, 147–151 (1946)MathSciNetMATH
4.
go back to reference Etemad, S.A., Arya, A.: Expert-driven perceptual features for modeling style and affect in human motion. IEEE Trans. Hum.-Mach. Syst. 46(4), 534–545 (2016)CrossRef Etemad, S.A., Arya, A.: Expert-driven perceptual features for modeling style and affect in human motion. IEEE Trans. Hum.-Mach. Syst. 46(4), 534–545 (2016)CrossRef
5.
go back to reference Han, S., Liu, B., Wang, R., Ye, Y., Twigg, C.D., Kin, K.: Online optical marker-based hand tracking with deep labels. ACM Trans. Graph. 37(4), 166 (2018)CrossRef Han, S., Liu, B., Wang, R., Ye, Y., Twigg, C.D., Kin, K.: Online optical marker-based hand tracking with deep labels. ACM Trans. Graph. 37(4), 166 (2018)CrossRef
6.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
9.
go back to reference Holzreiter, S.: Autolabeling 3D tracks using neural networks. Clin. Biomech. 20(1), 1–8 (2005)CrossRef Holzreiter, S.: Autolabeling 3D tracks using neural networks. Clin. Biomech. 20(1), 1–8 (2005)CrossRef
10.
go back to reference Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)CrossRef Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)CrossRef
11.
go back to reference Loper, M., Mahmood, N., Black, M.J.: MoSh: motion and shape capture from sparse markers. ACM Trans. Graph. 33(6), 220 (2014)CrossRef Loper, M., Mahmood, N., Black, M.J.: MoSh: motion and shape capture from sparse markers. ACM Trans. Graph. 33(6), 220 (2014)CrossRef
13.
14.
go back to reference Pons-Moll, G., Romero, J., Mahmood, N., Black, M.J.: Dyna: a model of dynamic human shape in motion. ACM Trans. Graph. (TOG) 34(4), 120 (2015)CrossRef Pons-Moll, G., Romero, J., Mahmood, N., Black, M.J.: Dyna: a model of dynamic human shape in motion. ACM Trans. Graph. (TOG) 34(4), 120 (2015)CrossRef
15.
go back to reference Rezatofighi, S.H., et al.: Deep perm-set net: learn to predict sets with unknown permutation and cardinality using deep neural networks. arXiv preprint arXiv:1805.00613 (2018) Rezatofighi, S.H., et al.: Deep perm-set net: learn to predict sets with unknown permutation and cardinality using deep neural networks. arXiv preprint arXiv:​1805.​00613 (2018)
16.
go back to reference Santa Cruz, R., Fernando, B., Cherian, A., Gould, S.: DeepPermNet: visual permutation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3949–3957 (2017) Santa Cruz, R., Fernando, B., Cherian, A., Gould, S.: DeepPermNet: visual permutation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3949–3957 (2017)
17.
go back to reference Schubert, T., Gkogkidis, A., Ball, T., Burgard, W.: Automatic initialization for skeleton tracking in optical motion capture. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 734–739. IEEE (2015) Schubert, T., Gkogkidis, A., Ball, T., Burgard, W.: Automatic initialization for skeleton tracking in optical motion capture. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 734–739. IEEE (2015)
18.
go back to reference Sigal, L., Balan, A.O., Black, M.J.: HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vis. 87(1–2), 4 (2010)CrossRef Sigal, L., Balan, A.O., Black, M.J.: HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vis. 87(1–2), 4 (2010)CrossRef
19.
go back to reference Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 35(2), 876–879 (1964)MathSciNetCrossRef Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 35(2), 876–879 (1964)MathSciNetCrossRef
20.
go back to reference Troje, N.F.: Retrieving information from human movement patterns. In: Shipley, T.F., Zacks, J.M. (eds.) Understanding Events: How Humans See, Represent, and Act on Events. Oxford University, New York, vol. 1, pp. 308–334 (2008)CrossRef Troje, N.F.: Retrieving information from human movement patterns. In: Shipley, T.F., Zacks, J.M. (eds.) Understanding Events: How Humans See, Represent, and Act on Events. Oxford University, New York, vol. 1, pp. 308–334 (2008)CrossRef
Metadata
Title
Auto-labelling of Markers in Optical Motion Capture by Permutation Learning
Authors
Saeed Ghorbani
Ali Etemad
Nikolaus F. Troje
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-22514-8_14

Premium Partner