Skip to main content
Top
Published in: Wireless Networks 7/2019

16-01-2019

Auto-organization approach with adaptive frame periods for IEEE 802.15.4/zigbee forest fire detection system

Authors: Sofiane Ouni, Zayneb Trabelsi Ayoub, Farouk Kamoun

Published in: Wireless Networks | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using efficiently the wireless sensor networks based on IEEE 802.15.4/zigbee remains a real challenge for the forest fire detection and monitoring applications. The most relevant question is how we can maintain a long lifetime for the network with the need of fast and active sensor devices for the fire detection. In this paper, we propose a new approach Auto-organization, Adaptive frame Periods for forest Fire detection for multi-level optimization based on the network topology reorganization, and the frame activity period optimization according to the energy preservation and also the fire detection timing constraints. The reorganization is made locally according to the node states with regard to the fire detection events. It is made by a new association/re-association procedure that creates links and paths between nodes with respect to the two constraints. According to the network topology, an adaptive frame periods adjustment procedure is executed to select the suitable timing periods that reduce the sensor node activities without exceeding the timing constraints. The simulation results show superiority and efficiency of the proposed approach for the energy preservation, even if we consider a large network size.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B. J., & Wotton, B. M. (2006). Forest fires and climate change in the 21st century. Mitigation and Adaptation Strategies for Global Change, 11, 847–859.CrossRef Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B. J., & Wotton, B. M. (2006). Forest fires and climate change in the 21st century. Mitigation and Adaptation Strategies for Global Change, 11, 847–859.CrossRef
4.
go back to reference Lee, B.-H. & Wui, H.-K. (2010). Study on a dynamic superframe adjustment algorithm for IEEE 802.15.4 LR-WPAN. In Vehicular Technology Conference (VTC). IEEE, May 2010. Lee, B.-H. & Wui, H.-K. (2010). Study on a dynamic superframe adjustment algorithm for IEEE 802.15.4 LR-WPAN. In Vehicular Technology Conference (VTC). IEEE, May 2010.
5.
go back to reference Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
6.
go back to reference Doolin, D. M., & Sitar, N. (2006) Wireless sensor nodes for wildfire monitoring. In Proceedings of SPIE symposium on smart structures and materials, San Diego (pp. 477–484). Doolin, D. M., & Sitar, N. (2006) Wireless sensor nodes for wildfire monitoring. In Proceedings of SPIE symposium on smart structures and materials, San Diego (pp. 477–484).
7.
go back to reference Yu, L., Wang, N., & Meng, X. (2005). Real-time forest fire detection with wireless sensor networks. In Proceedings of international conference on wireless communications, networking and mobile computing (WiMob) (pp. 1214–1217). Yu, L., Wang, N., & Meng, X. (2005). Real-time forest fire detection with wireless sensor networks. In Proceedings of international conference on wireless communications, networking and mobile computing (WiMob) (pp. 1214–1217).
8.
go back to reference Kim, J., Lin, X., & Shroff, N. B. (2010). Minimizing the delay and maximizing lifetime for wireless sensor networks with anycast. IEEE/ACM Transactions on Networking, 12(2), 515–528. Kim, J., Lin, X., & Shroff, N. B. (2010). Minimizing the delay and maximizing lifetime for wireless sensor networks with anycast. IEEE/ACM Transactions on Networking, 12(2), 515–528.
9.
go back to reference Ganesh, U. A., Anand, M., Arun, S., Dinesh, M., Gunaseelan, P., & Karthik, R. (2012). Forest fire detection using optimized solar—Powered zigbee wireless sensor networks. International Journal of Scientific and Engineering Research, 4(6), 586–596. Ganesh, U. A., Anand, M., Arun, S., Dinesh, M., Gunaseelan, P., & Karthik, R. (2012). Forest fire detection using optimized solar—Powered zigbee wireless sensor networks. International Journal of Scientific and Engineering Research, 4(6), 586–596.
10.
go back to reference Zhang, J., Li, W., & Kan, J. (2008). Forest fire detection system based on a ZigBee wireless sensor network. Frontiers of Forestry in China, 3(3), 369–374.CrossRef Zhang, J., Li, W., & Kan, J. (2008). Forest fire detection system based on a ZigBee wireless sensor network. Frontiers of Forestry in China, 3(3), 369–374.CrossRef
11.
go back to reference Demin, G., Haifeng, L., Anna, J., & Guoxin, W. (2014). A forest fire prediction system based on rechargeable wireless sensor networks. In 4th IEEE international conference on network infrastructure and digital content (IC-NIDC). Demin, G., Haifeng, L., Anna, J., & Guoxin, W. (2014). A forest fire prediction system based on rechargeable wireless sensor networks. In 4th IEEE international conference on network infrastructure and digital content (IC-NIDC).
12.
go back to reference Othman, F., Bouabdallah, N., Boutaba, R. (2008). Load-balanced routing scheme for energy-efficient wireless sensor networks. In IEEE GLOBECOM 2008, New Orleans, LA, USA, December 2008. Othman, F., Bouabdallah, N., Boutaba, R. (2008). Load-balanced routing scheme for energy-efficient wireless sensor networks. In IEEE GLOBECOM 2008, New Orleans, LA, USA, December 2008.
14.
go back to reference Hefeeda, M., & Bagheri, M. (2009). Forest fire modeling and early detection using wireless sensor networks. Ad Hoc Sensor Wireless Networks, 7, 169–224. Hefeeda, M., & Bagheri, M. (2009). Forest fire modeling and early detection using wireless sensor networks. Ad Hoc Sensor Wireless Networks, 7, 169–224.
15.
go back to reference Aslan, Y. E., Korpeoglu, I., & Ulusoy, Ö. (2012). A framework for use of wireless sensor networks in forest fire detection and monitoring. Computers, Environment and Urban Systems, 36, 614–625.CrossRef Aslan, Y. E., Korpeoglu, I., & Ulusoy, Ö. (2012). A framework for use of wireless sensor networks in forest fire detection and monitoring. Computers, Environment and Urban Systems, 36, 614–625.CrossRef
16.
go back to reference Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A wireless sensor network deployment for rural and forest fire detection and verification. Sensor Nodes, 9(11), 8722–8747.CrossRef Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A wireless sensor network deployment for rural and forest fire detection and verification. Sensor Nodes, 9(11), 8722–8747.CrossRef
17.
go back to reference Kułakowski, P., Calle, E., & Marzo, J. L. (2012). Performance study of wireless sensor and actuator networks in forest fire scenarios. International Journal of Communication Systems, 26, 515–529.CrossRef Kułakowski, P., Calle, E., & Marzo, J. L. (2012). Performance study of wireless sensor and actuator networks in forest fire scenarios. International Journal of Communication Systems, 26, 515–529.CrossRef
18.
go back to reference Wenning, B., Pesch, D., Giel, A., & Gorg, C. (2009). Environmental monitoring aware routing: Making environmental sensor networks more robust. Telecommunication Systems, 43(1–2), 3–11. Wenning, B., Pesch, D., Giel, A., & Gorg, C. (2009). Environmental monitoring aware routing: Making environmental sensor networks more robust. Telecommunication Systems, 43(1–2), 3–11.
19.
go back to reference Jeon, J., Lee, J. W., Ha, J. Y., & Kwon, W. H. (2007). DCA: Duty-cycle adaptation algorithm for IEEE 802.15.4 beacon-enabled networks. In Vehicular technology conference (VTC). IEEE, April 2007. Jeon, J., Lee, J. W., Ha, J. Y., & Kwon, W. H. (2007). DCA: Duty-cycle adaptation algorithm for IEEE 802.15.4 beacon-enabled networks. In Vehicular technology conference (VTC). IEEE, April 2007.
20.
go back to reference IEEE Std 802.15.4™-2011 (Revision of IEEE Std 802.15.4-2006), IEEE Standard for Local and metropolitan area networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Computer Society, sponsored by the AN/MAN Standards Committee, September 5, 2011. IEEE Std 802.15.4™-2011 (Revision of IEEE Std 802.15.4-2006), IEEE Standard for Local and metropolitan area networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Computer Society, sponsored by the AN/MAN Standards Committee, September 5, 2011.
21.
go back to reference Lim, J. H. & Jang, B. T. (2008). Dynamic duty cycle adaptation to real-time data in IEEE 802.15.4 based WSN. In Proceedings of 5th IEEE communication, and networking conference (pp. 353–357) January 2008. Lim, J. H. & Jang, B. T. (2008). Dynamic duty cycle adaptation to real-time data in IEEE 802.15.4 based WSN. In Proceedings of 5th IEEE communication, and networking conference (pp. 353–357) January 2008.
22.
go back to reference Neugebauer, M., Plnnigs, J., & Kabitzsch, K.(2005). A new beacon order adaptation algorithm for IEEE 802.15. 4 networks. In Proceeedings of the 2nd European workshop on wireless sensor networks (pp. 302–311). IEEE. Neugebauer, M., Plnnigs, J., & Kabitzsch, K.(2005). A new beacon order adaptation algorithm for IEEE 802.15. 4 networks. In Proceeedings of the 2nd European workshop on wireless sensor networks (pp. 302–311). IEEE.
23.
go back to reference Al Kiyumi, R., Vural, S., Foh, C. H., & Tafazolli, R. (2015). A distributed sleep mechanism for energy-efficiency in non-beacon-enabled IEEE 802.15.4 networks. In IEEE 20th international workshop on computer aided modelling and design of communication links and networks (CAMAD). Al Kiyumi, R., Vural, S., Foh, C. H., & Tafazolli, R. (2015). A distributed sleep mechanism for energy-efficiency in non-beacon-enabled IEEE 802.15.4 networks. In IEEE 20th international workshop on computer aided modelling and design of communication links and networks (CAMAD).
24.
go back to reference Hai, L., & Vu, T. S. (2006). Collision probability in saturated IEEE 802.11 networks. In Australian telecommunication networks and applications conference (ATNAC), Australia, December 2006. Hai, L., & Vu, T. S. (2006). Collision probability in saturated IEEE 802.11 networks. In Australian telecommunication networks and applications conference (ATNAC), Australia, December 2006.
25.
go back to reference Ning, X., & Cassandras, C. G. (2010). Dynamic sleep time control in wireless sensor networks. ACM Transactions on Sensor Networks, 6(3), 1–37.CrossRef Ning, X., & Cassandras, C. G. (2010). Dynamic sleep time control in wireless sensor networks. ACM Transactions on Sensor Networks, 6(3), 1–37.CrossRef
26.
go back to reference Cohen, R., & Kapchits, B. (2009). An optimal wake-up scheduling algorithm for minimizing energy consumption while limiting maximum delay in a mesh sensor network. IEEE/ACM Transactions on Networking, 17(2), 570–581.CrossRef Cohen, R., & Kapchits, B. (2009). An optimal wake-up scheduling algorithm for minimizing energy consumption while limiting maximum delay in a mesh sensor network. IEEE/ACM Transactions on Networking, 17(2), 570–581.CrossRef
27.
go back to reference Ferrari, M., & Pizziniaco, L. (2006). An adaptive scheme for active periods schedule in IEEE 802.15.4 wireless networks, ISWCS ‘06. In 3rd international symposium on wireless communication systems. Ferrari, M., & Pizziniaco, L. (2006). An adaptive scheme for active periods schedule in IEEE 802.15.4 wireless networks, ISWCS ‘06. In 3rd international symposium on wireless communication systems.
28.
go back to reference Park, P., Ergen, S. C., Fischione, C., & Sangiovanni-Vincentelli, A. (2013). Duty-cycle optimization for IEEE 802.15.4 wireless sensor networks. ACM Transactions on Sensor Networks, 10(1), 12.CrossRef Park, P., Ergen, S. C., Fischione, C., & Sangiovanni-Vincentelli, A. (2013). Duty-cycle optimization for IEEE 802.15.4 wireless sensor networks. ACM Transactions on Sensor Networks, 10(1), 12.CrossRef
29.
go back to reference Rasouli, H., Kavian, Y. S., & Rashvand, H. F. (2014). ADCA: Adaptive duty cycle algorithm for energy efficient IEEE 802.15.4 beacon-enabled wireless sensor networks. IEEE Sensors Journal, 14(11), 3893–3902.CrossRef Rasouli, H., Kavian, Y. S., & Rashvand, H. F. (2014). ADCA: Adaptive duty cycle algorithm for energy efficient IEEE 802.15.4 beacon-enabled wireless sensor networks. IEEE Sensors Journal, 14(11), 3893–3902.CrossRef
30.
go back to reference Ruzzelli1, A. G., Schoofs, A., O’Hare, G. M. P., Aoun, M., & van der Stok, P. (2009). Coordinated sleeping for beaconless 802.15.4-based multihop networks. In International conference on sensor systems and software, S-CUBE 2009: Sensor systems and software (pp. 272–287). Ruzzelli1, A. G., Schoofs, A., O’Hare, G. M. P., Aoun, M., & van der Stok, P. (2009). Coordinated sleeping for beaconless 802.15.4-based multihop networks. In International conference on sensor systems and software, S-CUBE 2009: Sensor systems and software (pp. 272–287).
31.
go back to reference IEEE-TG15.4. (2006). Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). IEEE standard for information technology. IEEE-TG15.4. (2006). Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). IEEE standard for information technology.
32.
go back to reference Alkhatib, A. A. A. (2014). A review on forest fire detection techniques. International Journal of Distributed Sensor Networks, Hindawi Publishing Corporation, Vol. 2014. Alkhatib, A. A. A. (2014). A review on forest fire detection techniques. International Journal of Distributed Sensor Networks, Hindawi Publishing Corporation, Vol. 2014.
33.
go back to reference Wang, Q., Dapeng, W., & Fan, P. (2010). Delay-constrained optimal link scheduling in wireless sensor networks. IEEE Transaction on Vehicular Technology, 59(9), 4564–4577.CrossRef Wang, Q., Dapeng, W., & Fan, P. (2010). Delay-constrained optimal link scheduling in wireless sensor networks. IEEE Transaction on Vehicular Technology, 59(9), 4564–4577.CrossRef
34.
go back to reference Akkaş, M. A., & Sokullu, R. (2017). An IoT-based greenhouse monitoring system with Micaz motes. International Workshop on IoT, M2M and Healthcare (IMH 2017). Akkaş, M. A., & Sokullu, R. (2017). An IoT-based greenhouse monitoring system with Micaz motes. International Workshop on IoT, M2M and Healthcare (IMH 2017).
35.
go back to reference Cunha, A., Koubâa, A., Severino, R., & Alves, M. (2007). Open-ZB: An open-source implementation of the IEEE 802.15.4/ZigBee protocol stack on TinyOS. In IEEE international conference on mobile adhoc and sensor systems. Cunha, A., Koubâa, A., Severino, R., & Alves, M. (2007). Open-ZB: An open-source implementation of the IEEE 802.15.4/ZigBee protocol stack on TinyOS. In IEEE international conference on mobile adhoc and sensor systems.
36.
go back to reference Oliveira, C. H. S., Ghamri-Doudane, Y., & Lohierh, S. (2013) A duty cycle self-adaptation algorithm for the 802.15.4 wireless sensor networks. In Global information infrastructure symposium. IEEE. Oliveira, C. H. S., Ghamri-Doudane, Y., & Lohierh, S. (2013) A duty cycle self-adaptation algorithm for the 802.15.4 wireless sensor networks. In Global information infrastructure symposium. IEEE.
37.
go back to reference Silicon Labs. ETRX3 Series ZigBee Module AT-Command Dictionary, Telegesis™ is a trademark of Silicon Laboratories Inc., AT Command Manual November 2015 (Rev 3.09). Silicon Labs. ETRX3 Series ZigBee Module AT-Command Dictionary, Telegesis™ is a trademark of Silicon Laboratories Inc., AT Command Manual November 2015 (Rev 3.09).
38.
go back to reference Stankovic, J. A., Spuri, M., Ramamritham, K., & Buttazzo, G. C. (1998). Deadline scheduling for real-time systems. Dordrecht: Kluwer Academic Publisher.CrossRef Stankovic, J. A., Spuri, M., Ramamritham, K., & Buttazzo, G. C. (1998). Deadline scheduling for real-time systems. Dordrecht: Kluwer Academic Publisher.CrossRef
39.
go back to reference Tindell, K., & Clark, J. (1994). Holistic schedulability analysis for distributed hard real-time systems. Microprocessing and Microprogramming, 50, 117–134.CrossRef Tindell, K., & Clark, J. (1994). Holistic schedulability analysis for distributed hard real-time systems. Microprocessing and Microprogramming, 50, 117–134.CrossRef
40.
go back to reference Audsley, N., Burns, A., Davis, R. I., Tindell, K. W., & Wellings, A. J. (1995). Fixed priority preemptive scheduling: An historical perspective. Real-Time Systems, 8(2/3), 173–198.CrossRef Audsley, N., Burns, A., Davis, R. I., Tindell, K. W., & Wellings, A. J. (1995). Fixed priority preemptive scheduling: An historical perspective. Real-Time Systems, 8(2/3), 173–198.CrossRef
41.
go back to reference Audsley, N. C., Tindell, K., & Burns, A. (1993) The end of line for static cyclic scheduling?. In 5th Euromicro works. on real-time systems. Audsley, N. C., Tindell, K., & Burns, A. (1993) The end of line for static cyclic scheduling?. In 5th Euromicro works. on real-time systems.
42.
go back to reference Hu, M., Luo, J., Wang, Y., Lukasiewycz, M., & Zeng, Z. (2014). Holistic scheduling of real-time applications in time-triggered in-vehicle networks. IEEE Transactions on Industrial Informatics, 10(3), 1817–1828.CrossRef Hu, M., Luo, J., Wang, Y., Lukasiewycz, M., & Zeng, Z. (2014). Holistic scheduling of real-time applications in time-triggered in-vehicle networks. IEEE Transactions on Industrial Informatics, 10(3), 1817–1828.CrossRef
43.
go back to reference Tindell, K., Burns, A., & Wellings, A. J. (1995). Calculating controller area network (can) message response times. Control Engineering Practice, 3(8), 1163–1169.CrossRef Tindell, K., Burns, A., & Wellings, A. J. (1995). Calculating controller area network (can) message response times. Control Engineering Practice, 3(8), 1163–1169.CrossRef
44.
go back to reference Mary, G. I., Alex, Z. C., & Jenkins, L. (2013). Response time analysis of messages in controller area network: A review. Journal of Computer Networks and Communications, 2013, Article ID 148015, 11 pages. Mary, G. I., Alex, Z. C., & Jenkins, L. (2013). Response time analysis of messages in controller area network: A review. Journal of Computer Networks and Communications, 2013, Article ID 148015, 11 pages.
45.
go back to reference Kumar, A., Altman, E., Miorandi, D., & Goyal, M. (2005). New insights from a fixed point analysis of single cell IEEE 802.11 wireless LANs. In Proceedings of INFOCOM (pp. 1550–1561). Kumar, A., Altman, E., Miorandi, D., & Goyal, M. (2005). New insights from a fixed point analysis of single cell IEEE 802.11 wireless LANs. In Proceedings of INFOCOM (pp. 1550–1561).
47.
go back to reference Sung, W.-T., & Tsai, M.-H. (2012). Data fusion of multi-sensor for IOT precise measurement based on improved PSO algorithms. Computers and Mathematics with Applications, 64(5), 1450–1461.CrossRef Sung, W.-T., & Tsai, M.-H. (2012). Data fusion of multi-sensor for IOT precise measurement based on improved PSO algorithms. Computers and Mathematics with Applications, 64(5), 1450–1461.CrossRef
48.
go back to reference Medagliani, P., Martalò, M., & Ferrari, G. (2011). Clustered Zigbee networks with data fusion: Characterization and performance analysis. Ad Hoc Networks, 9, 1083–1103.CrossRef Medagliani, P., Martalò, M., & Ferrari, G. (2011). Clustered Zigbee networks with data fusion: Characterization and performance analysis. Ad Hoc Networks, 9, 1083–1103.CrossRef
49.
go back to reference Jurdak, R., Ruzzelli, A. G., & O’Hare, G. M. P. (2010). Radio sleep mode optimization in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(7), 955–968.CrossRef Jurdak, R., Ruzzelli, A. G., & O’Hare, G. M. P. (2010). Radio sleep mode optimization in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(7), 955–968.CrossRef
50.
go back to reference Eklund, P. W. (2001). A distributed spatial architecture for bush fire simulation. International Journal of Geographical Information Science, 15, 363–378.CrossRef Eklund, P. W. (2001). A distributed spatial architecture for bush fire simulation. International Journal of Geographical Information Science, 15, 363–378.CrossRef
51.
go back to reference Tymstra, C., Bryce. R. W., Wotton, B.M., & Armitage, O. B. (2010) Development and structure of Prometheus: The Canadian Wildland fire growth simulation model, Inf Rep NOR-X-417. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada (pp. 1–102). Tymstra, C., Bryce. R. W., Wotton, B.M., & Armitage, O. B. (2010) Development and structure of Prometheus: The Canadian Wildland fire growth simulation model, Inf Rep NOR-X-417. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada (pp. 1–102).
52.
go back to reference Ayoub, Z. T., Ouni, S, & Kamoun, F. (2012). Energy consumption analysis to predict the lifetime of IEEE 802.15.4 wireless sensor networks. In 3rd international conference communications and networking (ComNet). Ayoub, Z. T., Ouni, S, & Kamoun, F. (2012). Energy consumption analysis to predict the lifetime of IEEE 802.15.4 wireless sensor networks. In 3rd international conference communications and networking (ComNet).
54.
go back to reference Shuaib, K., Alnuaimi, M., Boulmalf, M., Jawhar, I., Sallabi, F., & Lakas, A. (2007). Performance evaluation of IEEE 802.15.4: Experimental and simulation results. Journal of Communications, V2(4), 29–37. Shuaib, K., Alnuaimi, M., Boulmalf, M., Jawhar, I., Sallabi, F., & Lakas, A. (2007). Performance evaluation of IEEE 802.15.4: Experimental and simulation results. Journal of Communications, V2(4), 29–37.
Metadata
Title
Auto-organization approach with adaptive frame periods for IEEE 802.15.4/zigbee forest fire detection system
Authors
Sofiane Ouni
Zayneb Trabelsi Ayoub
Farouk Kamoun
Publication date
16-01-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 7/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-01936-x

Other articles of this Issue 7/2019

Wireless Networks 7/2019 Go to the issue