Skip to main content
Top
Published in: Journal of Materials Science 21/2020

20-04-2020 | Polymers & biopolymers

Autocatalyzed interfacial thiol–isocyanate click reactions for microencapsulation of ionic liquids

Authors: Chunmei Li, Zhengzhou Su, Jiaojun Tan, Ying Xue, Yumin Yang, Hangyu Yin, Guoxian Zhang, Qiuyu Zhang

Published in: Journal of Materials Science | Issue 21/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, ionic liquids (ILs) have received increasing attention because of low vapor pressure, environment friendliness, good thermal and chemical stability and strong solubility. However, the liquid nature and high viscosity restrict their applications in some fields. Encapsulation of ILs is an attractive way to handle them easily. Herein, we proposed a facile method to prepare IL-loaded microcapsules using IL-in-oil emulsion as template, poly(amide-thioether) as surfactant and interfacial thiol–isocyanate click reaction for shell formation. In this system, core materials ILs were proved to be able to catalyze thiol–isocyanate reaction without side products, which significantly simplified the preparation process of microcapsules. The shell of the microcapsules was composed of polythiourethane and poly(amide-thioether), which provided a strong protection for ILs. In addition, compared with IL-in-water emulsion, the application of IL-in-oil emulsion avoided the side reactions of the highly active isocyanate. The IL content of the resulted microcapsules could reach as high as 70 wt.%. It was also demonstrated that the proposed encapsulation technology was suitable for ILs with different polarities. This work provides an efficient way to encapsulate ILs using emulsion template, which will make ILs find widespread applications across various fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ahrenberg M, Beck M, Neise C, Keßler O, Kragl U, Verevkin SP, Schick C (2016) Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry. Phys Chem Chem Phys 18:21381–21390CrossRef Ahrenberg M, Beck M, Neise C, Keßler O, Kragl U, Verevkin SP, Schick C (2016) Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry. Phys Chem Chem Phys 18:21381–21390CrossRef
2.
go back to reference Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977CrossRef Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977CrossRef
3.
go back to reference Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580CrossRef Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580CrossRef
4.
go back to reference Ma Y, Li Z, Wang H, Li H (2019) Synthesis and optimization of polyurethane microcapsules containing [BMIm] PF6 ionic liquid lubricant. J Colloid Interface Sci 534:469–479CrossRef Ma Y, Li Z, Wang H, Li H (2019) Synthesis and optimization of polyurethane microcapsules containing [BMIm] PF6 ionic liquid lubricant. J Colloid Interface Sci 534:469–479CrossRef
5.
go back to reference Li H, Ma Y, Li Z, Cui Y, Wang H (2018) Synthesis of novel multilayer composite microcapsules and their application in self-lubricating polymer composites. Compos Sci Technol 164:120–128CrossRef Li H, Ma Y, Li Z, Cui Y, Wang H (2018) Synthesis of novel multilayer composite microcapsules and their application in self-lubricating polymer composites. Compos Sci Technol 164:120–128CrossRef
6.
go back to reference Wang H, Li M, Liu D, Zhao Y, Zhu Y (2016) Tribological properties tests and simulations of the nano-micro multilevel porous self-lubricating peek composites with ionic liquid lubrication. J Mater Sci 51:3917–3927CrossRef Wang H, Li M, Liu D, Zhao Y, Zhu Y (2016) Tribological properties tests and simulations of the nano-micro multilevel porous self-lubricating peek composites with ionic liquid lubrication. J Mater Sci 51:3917–3927CrossRef
7.
go back to reference Herrmann S, De Matteis L, Fuente JM, Mitchell SG, Streb C (2017) Removal of multiple contaminants from water by polyoxometalate supported ionic liquid phases (POM-SILPS). Angew Chem Int Ed 56:1667–1670CrossRef Herrmann S, De Matteis L, Fuente JM, Mitchell SG, Streb C (2017) Removal of multiple contaminants from water by polyoxometalate supported ionic liquid phases (POM-SILPS). Angew Chem Int Ed 56:1667–1670CrossRef
8.
go back to reference Li K, Qian L, Song W, Zhu M, Zhao Y, Miao Z (2018) Preparation of an ionic liquid-based hydrogel with hyperbranched topology for efficient removal of Cr (VI). J Mater Sci 53:14821–14833CrossRef Li K, Qian L, Song W, Zhu M, Zhao Y, Miao Z (2018) Preparation of an ionic liquid-based hydrogel with hyperbranched topology for efficient removal of Cr (VI). J Mater Sci 53:14821–14833CrossRef
9.
go back to reference Cowan MG, Gin DL, Noble RD (2016) Poly (ionic liquid)/ionic liquid ion-gels with high “free” ionic liquid content: platform membrane materials for CO2/light gas separations. Acc Chem Res 49:724–732CrossRef Cowan MG, Gin DL, Noble RD (2016) Poly (ionic liquid)/ionic liquid ion-gels with high “free” ionic liquid content: platform membrane materials for CO2/light gas separations. Acc Chem Res 49:724–732CrossRef
10.
go back to reference Zhang W, Wei S, Wu Y, Wang Y-L, Zhang M, Roy D, Wang H, Yuan J et al (2019) Poly (ionic liquid)-derived graphitic nanoporous carbon membrane enables superior supercapacitive energy storage. ACS Nano 13:10261–10271CrossRef Zhang W, Wei S, Wu Y, Wang Y-L, Zhang M, Roy D, Wang H, Yuan J et al (2019) Poly (ionic liquid)-derived graphitic nanoporous carbon membrane enables superior supercapacitive energy storage. ACS Nano 13:10261–10271CrossRef
11.
go back to reference De Gaetano Y, Hubert J, Mohamadou A, Boudesocque S, Plantier-Royon R, Renault J-H, Dupont L (2016) Removal of pesticides from wastewater by ion pair centrifugal partition extraction using betaine-derived ionic liquids as extractants. Chem Eng J 285:596–604CrossRef De Gaetano Y, Hubert J, Mohamadou A, Boudesocque S, Plantier-Royon R, Renault J-H, Dupont L (2016) Removal of pesticides from wastewater by ion pair centrifugal partition extraction using betaine-derived ionic liquids as extractants. Chem Eng J 285:596–604CrossRef
12.
go back to reference Platzer S, Leyma R, Wolske S, Kandioller W, Heid E, Schröder C, Schagerl M, Krachler R et al (2017) Thioglycolate-based task-specific ionic liquids: metal extraction abilities vs acute algal toxicity. J Hazard Mater 340:113–119CrossRef Platzer S, Leyma R, Wolske S, Kandioller W, Heid E, Schröder C, Schagerl M, Krachler R et al (2017) Thioglycolate-based task-specific ionic liquids: metal extraction abilities vs acute algal toxicity. J Hazard Mater 340:113–119CrossRef
13.
go back to reference Wu C, Senftle TP, Schneider WF (2012) First-principles-guided design of ionic liquids for CO2 capture. Phys Chem Chem Phys 14:13163–13170CrossRef Wu C, Senftle TP, Schneider WF (2012) First-principles-guided design of ionic liquids for CO2 capture. Phys Chem Chem Phys 14:13163–13170CrossRef
14.
go back to reference Cui G, Wang J, Zhang S (2016) Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem Soc Rev 45:4307–4339CrossRef Cui G, Wang J, Zhang S (2016) Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem Soc Rev 45:4307–4339CrossRef
15.
go back to reference Guarnido IL, Routh AF, Mantle MD, Serrano MF, Marr PC (2019) Ionic liquid microcapsules: formation and application of polystyrene microcapsules with ionic liquid cores. ACS Sustain Chem Eng 7:1870–1874CrossRef Guarnido IL, Routh AF, Mantle MD, Serrano MF, Marr PC (2019) Ionic liquid microcapsules: formation and application of polystyrene microcapsules with ionic liquid cores. ACS Sustain Chem Eng 7:1870–1874CrossRef
16.
go back to reference Moya C, Alonso-Morales N, de Riva J, Morales-Collazo O, Brennecke JF, Palomar J (2018) Encapsulation of ionic liquids with an aprotic heterocyclic anion (AHA-IL) for CO2 capture: preserving the favorable thermodynamics and enhancing the kinetics of absorption. J Phys Chem B 122:2616–2626CrossRef Moya C, Alonso-Morales N, de Riva J, Morales-Collazo O, Brennecke JF, Palomar J (2018) Encapsulation of ionic liquids with an aprotic heterocyclic anion (AHA-IL) for CO2 capture: preserving the favorable thermodynamics and enhancing the kinetics of absorption. J Phys Chem B 122:2616–2626CrossRef
17.
go back to reference Luo Q, Wang Y, Chen Z, Wei P, Yoo E, Pentzer E (2019) Pickering emulsion-templated encapsulation of ionic liquids for contaminant removal. ACS Appl Mater Interface 11:9612–9620CrossRef Luo Q, Wang Y, Chen Z, Wei P, Yoo E, Pentzer E (2019) Pickering emulsion-templated encapsulation of ionic liquids for contaminant removal. ACS Appl Mater Interface 11:9612–9620CrossRef
18.
go back to reference Weiss E, Dutta B, Kirschning A, Abu-Reziq R (2014) BMim-PF6@ SiO2 microcapsules: particulated ionic liquid as a new material for the heterogenization of catalysts. Chem Mater 26:4781–4787CrossRef Weiss E, Dutta B, Kirschning A, Abu-Reziq R (2014) BMim-PF6@ SiO2 microcapsules: particulated ionic liquid as a new material for the heterogenization of catalysts. Chem Mater 26:4781–4787CrossRef
19.
go back to reference Hoyle CE, Lowe AB, Bowman CN (2010) Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev 39:1355–1387CrossRef Hoyle CE, Lowe AB, Bowman CN (2010) Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev 39:1355–1387CrossRef
20.
go back to reference Durham OZ, Krishnan S, Shipp DA (2012) Polymer microspheres prepared by water-borne thiol–ene suspension photopolymerization. Acs Macro Lett 1:1134–1137CrossRef Durham OZ, Krishnan S, Shipp DA (2012) Polymer microspheres prepared by water-borne thiol–ene suspension photopolymerization. Acs Macro Lett 1:1134–1137CrossRef
21.
go back to reference Tan J, Li C, Zhou J, Yin C, Zhang B, Gu J, Zhang Q (2014) Fast and facile fabrication of porous polymer particles via thiol–ene suspension photopolymerization. RSC Adv 4:13334–13339CrossRef Tan J, Li C, Zhou J, Yin C, Zhang B, Gu J, Zhang Q (2014) Fast and facile fabrication of porous polymer particles via thiol–ene suspension photopolymerization. RSC Adv 4:13334–13339CrossRef
22.
go back to reference Wang C, Podgorski M, Bowman C (2014) Monodisperse functional microspheres from step-growth "click" polymerizations: preparation, functionalization and implementation. Mater Horiz 1:535–539CrossRef Wang C, Podgorski M, Bowman C (2014) Monodisperse functional microspheres from step-growth "click" polymerizations: preparation, functionalization and implementation. Mater Horiz 1:535–539CrossRef
23.
go back to reference Tan J, Li C, Dan S, Li H, Gu J, Zhang B, Zhang H, Zhang Q (2016) One-step thiol-isocyanate dispersion polymerization: preparation of uniform, cross-linked and functional particles. Chem Eng J 304:461–468CrossRef Tan J, Li C, Dan S, Li H, Gu J, Zhang B, Zhang H, Zhang Q (2016) One-step thiol-isocyanate dispersion polymerization: preparation of uniform, cross-linked and functional particles. Chem Eng J 304:461–468CrossRef
24.
go back to reference Tan J, Li C, De Bruycker K, Zhang G, Gu J, Zhang Q (2017) Recyclable cross-linked hydroxythioether particles with tunable structures via robust and efficient thiol-epoxy dispersion polymerizations. RSC Adv 7:51763–51772CrossRef Tan J, Li C, De Bruycker K, Zhang G, Gu J, Zhang Q (2017) Recyclable cross-linked hydroxythioether particles with tunable structures via robust and efficient thiol-epoxy dispersion polymerizations. RSC Adv 7:51763–51772CrossRef
25.
go back to reference Jasinski F, Lobry E, Tarablsi B, Chemtob A, Croutxébarghorn C, Nouen DL, Criqui A (2014) Light-mediated thiol–ene polymerization in miniemulsion: a fast route to semicrystalline polysulfide nanoparticles. ACS Macro Lett 3:958–962CrossRef Jasinski F, Lobry E, Tarablsi B, Chemtob A, Croutxébarghorn C, Nouen DL, Criqui A (2014) Light-mediated thiol–ene polymerization in miniemulsion: a fast route to semicrystalline polysulfide nanoparticles. ACS Macro Lett 3:958–962CrossRef
26.
go back to reference Prasath RA (2010) Thiol–ene and thiol–yne chemistry in microfluidics: a straightforward method towards macroporous and nonporous functional polymer beads. Polym Chem 1:685–692CrossRef Prasath RA (2010) Thiol–ene and thiol–yne chemistry in microfluidics: a straightforward method towards macroporous and nonporous functional polymer beads. Polym Chem 1:685–692CrossRef
27.
go back to reference Tan J, Li C, Li H, Zhang H, Gu J, Zhang B, Zhang H, Zhang Q (2015) Water-borne thiol–isocyanate click chemistry in microfluidics: rapid and energy-efficient preparation of uniform particles. Polym Chem 6:4366–4373CrossRef Tan J, Li C, Li H, Zhang H, Gu J, Zhang B, Zhang H, Zhang Q (2015) Water-borne thiol–isocyanate click chemistry in microfluidics: rapid and energy-efficient preparation of uniform particles. Polym Chem 6:4366–4373CrossRef
28.
go back to reference Li C, Tan J, Gu J, Qiao L, Zhang B, Zhang Q (2016) Rapid and efficient synthesis of isocyanate microcapsules via thiol-ene photopolymerization in pickering emulsion and its application in self-healing coating. Compos Sci Technol 123:250–258CrossRef Li C, Tan J, Gu J, Qiao L, Zhang B, Zhang Q (2016) Rapid and efficient synthesis of isocyanate microcapsules via thiol-ene photopolymerization in pickering emulsion and its application in self-healing coating. Compos Sci Technol 123:250–258CrossRef
29.
go back to reference Li CM, Tan JJ, Gu JW, Xue Y, Qiao L, Zhang QY (2017) Facile synthesis of imidazole microcapsules via thiol-click chemistry and their application as thermally latent curing agent for epoxy resins. Compos Sci Technol 142:198–206CrossRef Li CM, Tan JJ, Gu JW, Xue Y, Qiao L, Zhang QY (2017) Facile synthesis of imidazole microcapsules via thiol-click chemistry and their application as thermally latent curing agent for epoxy resins. Compos Sci Technol 142:198–206CrossRef
30.
go back to reference Li CM, Tan JJ, Li H, Yin DZ, Gu JW, Zhang BL, Zhang QY (2015) Thiol–isocyanate click reaction in a pickering emulsion: a rapid and efficient route to encapsulation of healing agents. Polym Chem 6:7100–7111CrossRef Li CM, Tan JJ, Li H, Yin DZ, Gu JW, Zhang BL, Zhang QY (2015) Thiol–isocyanate click reaction in a pickering emulsion: a rapid and efficient route to encapsulation of healing agents. Polym Chem 6:7100–7111CrossRef
31.
go back to reference Shin J, Matsushima H, Comer CM, Bowman CN, Hoyle CE (2010) Thiol−isocyanate−ene ternary networks by sequential and simultaneous thiol click reactions. Chem Mater 22:2616–2625CrossRef Shin J, Matsushima H, Comer CM, Bowman CN, Hoyle CE (2010) Thiol−isocyanate−ene ternary networks by sequential and simultaneous thiol click reactions. Chem Mater 22:2616–2625CrossRef
32.
go back to reference Li Q, Zhou H, Wicks DA, Hoyle CE, Magers DH, McAlexander HR (2009) Comparison of small molecule and polymeric urethanes, thiourethanes, and dithiourethanes: hydrogen bonding and thermal, physical, and mechanical properties. Macromolecules 42:1824–1833CrossRef Li Q, Zhou H, Wicks DA, Hoyle CE, Magers DH, McAlexander HR (2009) Comparison of small molecule and polymeric urethanes, thiourethanes, and dithiourethanes: hydrogen bonding and thermal, physical, and mechanical properties. Macromolecules 42:1824–1833CrossRef
33.
go back to reference Kuypers S, Pramanik SK, D'Olieslaeger L, Reekmans G, Peters M, D'Haen J, Vanderzande D, Junkers T et al (2015) Interfacial thiol–isocyanate reactions for functional nanocarriers: a facile route towards tunable morphologies and hydrophilic payload encapsulation. Chem Commun 51:15858–15861CrossRef Kuypers S, Pramanik SK, D'Olieslaeger L, Reekmans G, Peters M, D'Haen J, Vanderzande D, Junkers T et al (2015) Interfacial thiol–isocyanate reactions for functional nanocarriers: a facile route towards tunable morphologies and hydrophilic payload encapsulation. Chem Commun 51:15858–15861CrossRef
34.
go back to reference Su Z, Li C, Tan J, Xue Y, Zhang G, Yang Y, Zhang Q (2019) Synthesis of poly (amide-thioether) with tunable hydrophilicity via thiolactone chemistry and its application in oil-in-oil emulsions. J Colloid Interface Sci 549:201–211CrossRef Su Z, Li C, Tan J, Xue Y, Zhang G, Yang Y, Zhang Q (2019) Synthesis of poly (amide-thioether) with tunable hydrophilicity via thiolactone chemistry and its application in oil-in-oil emulsions. J Colloid Interface Sci 549:201–211CrossRef
35.
go back to reference Hensarling RM, Rahane SB, LeBlanc AP, Sparks BJ, White EM, Locklin J, Patton DL (2011) Thiol–isocyanate “click” reactions: rapid development of functional polymeric surfaces. Polym Chem 2:88–90CrossRef Hensarling RM, Rahane SB, LeBlanc AP, Sparks BJ, White EM, Locklin J, Patton DL (2011) Thiol–isocyanate “click” reactions: rapid development of functional polymeric surfaces. Polym Chem 2:88–90CrossRef
36.
go back to reference Heise M, Martin G (1989) Curing mechanism and thermal properties of epoxy-imidazole systems. Macromolecules 22:99–104CrossRef Heise M, Martin G (1989) Curing mechanism and thermal properties of epoxy-imidazole systems. Macromolecules 22:99–104CrossRef
37.
go back to reference Kiefer J, Fries J, Leipertz A (2007) Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl Spectrosc 61:1306–1311CrossRef Kiefer J, Fries J, Leipertz A (2007) Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide and 1-ethyl-3-methylimidazolium ethylsulfate. Appl Spectrosc 61:1306–1311CrossRef
Metadata
Title
Autocatalyzed interfacial thiol–isocyanate click reactions for microencapsulation of ionic liquids
Authors
Chunmei Li
Zhengzhou Su
Jiaojun Tan
Ying Xue
Yumin Yang
Hangyu Yin
Guoxian Zhang
Qiuyu Zhang
Publication date
20-04-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04670-y

Other articles of this Issue 21/2020

Journal of Materials Science 21/2020 Go to the issue

Premium Partners