Skip to main content
Top

2024 | OriginalPaper | Chapter

Automated Detection of Refilling Stations in Industry Using Unsupervised Learning

Authors : José Ribeiro, Rui Pinheiro, Salviano Soares, António Valente, Vasco Amorim, Vitor Filipe

Published in: Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The manual monitoring of refilling stations in industrial environments can lead to inefficiencies and errors, which can impact the overall performance of the production line. In this paper, we present an unsupervised detection pipeline for identifying refilling stations in industrial environments. The proposed pipeline uses a combination of image processing, pattern recognition, and deep learning techniques to detect refilling stations in visual data. We evaluate our method on a set of industrial images, and the findings demonstrate that the pipeline is reliable at detecting refilling stations. Furthermore, the proposed pipeline can automate the monitoring of refilling stations, eliminating the need for manual monitoring and thus improving industrial operations’ efficiency and responsiveness. This method is a versatile solution that can be applied to different industrial contexts without the need for labeled data or prior knowledge about the location of refilling stations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tjahjono, B., Esplugues, C., Ares, E., Pelaez, G.: What does Industry 4.0 mean to Supply Chain? Procedia Manuf. 13, 1175–1182 (2017) Tjahjono, B., Esplugues, C., Ares, E., Pelaez, G.: What does Industry 4.0 mean to Supply Chain? Procedia Manuf. 13, 1175–1182 (2017)
2.
go back to reference Thames, L., Schaefer, D.: Industry 4.0: an overview of key benefits, technologies, and challenges. Cybersecurity for Industry 4.0: Analysis for Design and Manufacturing 1–33 (2017) Thames, L., Schaefer, D.: Industry 4.0: an overview of key benefits, technologies, and challenges. Cybersecurity for Industry 4.0: Analysis for Design and Manufacturing 1–33 (2017)
5.
go back to reference Bukchin, Y., Meller, R.D.: A space allocation algorithm for assembly line components. IIE Trans. 37, 51–61 (2007)CrossRef Bukchin, Y., Meller, R.D.: A space allocation algorithm for assembly line components. IIE Trans. 37, 51–61 (2007)CrossRef
6.
go back to reference Wiley, V., Lucas, T.: Computer vision and image processing: a paper review. Int. J. Artif. Intell. Res. 2, 29–36 (2018)CrossRef Wiley, V., Lucas, T.: Computer vision and image processing: a paper review. Int. J. Artif. Intell. Res. 2, 29–36 (2018)CrossRef
7.
go back to reference Chum, L., Subramanian, A., Balasubramanian, V.N., Jawahar, C.V.: Beyond supervised learning: a computer vision perspective. J. Indian Inst. Sci. 99, 177–199 (2019) Chum, L., Subramanian, A., Balasubramanian, V.N., Jawahar, C.V.: Beyond supervised learning: a computer vision perspective. J. Indian Inst. Sci. 99, 177–199 (2019)
8.
go back to reference Wang, J., Luo, Z., Wong, E.C.: RFID-enabled tracking in flexible assembly line. Int. J. Adv. Manuf. Technol. 46, 351–360 (2010)CrossRef Wang, J., Luo, Z., Wong, E.C.: RFID-enabled tracking in flexible assembly line. Int. J. Adv. Manuf. Technol. 46, 351–360 (2010)CrossRef
9.
go back to reference Liu, W.N., et al.: RFID-enabled real-time production management system for Loncin motorcycle assembly line. Int. J. Comput. Integr. Manuf. 25, 86–99 (2010)CrossRef Liu, W.N., et al.: RFID-enabled real-time production management system for Loncin motorcycle assembly line. Int. J. Comput. Integr. Manuf. 25, 86–99 (2010)CrossRef
10.
go back to reference Syafrudin, M., Fitriyani, N.L., Alfian, G., Rhee, J.: An affordable fast early warning system for edge computing in assembly line. Appl. Sci. 9(1), 84 (2018)CrossRef Syafrudin, M., Fitriyani, N.L., Alfian, G., Rhee, J.: An affordable fast early warning system for edge computing in assembly line. Appl. Sci. 9(1), 84 (2018)CrossRef
11.
go back to reference Nerakae, P., Uangpairoj, P., Chamniprasart, K.: Using machine vision for flexible automatic assembly system. Procedia Comput Sci. 96, 428–435 (2016)CrossRef Nerakae, P., Uangpairoj, P., Chamniprasart, K.: Using machine vision for flexible automatic assembly system. Procedia Comput Sci. 96, 428–435 (2016)CrossRef
12.
go back to reference Kejriwal, N., Garg, S., Kumar, S.: Product counting using images with application to robot-based retail stock assessment. In: IEEE Conference on Technologies for Practical Robot Applications, TePRA, pp. 1- 6 (2015) Kejriwal, N., Garg, S., Kumar, S.: Product counting using images with application to robot-based retail stock assessment. In: IEEE Conference on Technologies for Practical Robot Applications, TePRA, pp. 1- 6 (2015)
13.
go back to reference Pierleoni, P., Belli, A., Palma, L., Palmucci, M., Sabbatini, L.: A machine vision system for manual assembly line monitoring. Proceedings of International Conference on Intelligent Engineering and Management, ICIEM 2020, 33–38 (2020) Pierleoni, P., Belli, A., Palma, L., Palmucci, M., Sabbatini, L.: A machine vision system for manual assembly line monitoring. Proceedings of International Conference on Intelligent Engineering and Management, ICIEM 2020, 33–38 (2020)
14.
go back to reference Sauvalle, B., de La Fortelle, A.: Autoencoder-based background reconstruction and foreground segmentation with background noise estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3244–3255 (2021) Sauvalle, B., de La Fortelle, A.: Autoencoder-based background reconstruction and foreground segmentation with background noise estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3244–3255 (2021)
15.
go back to reference Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory. 13, 21–27 (1967)CrossRef Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory. 13, 21–27 (1967)CrossRef
Metadata
Title
Automated Detection of Refilling Stations in Industry Using Unsupervised Learning
Authors
José Ribeiro
Rui Pinheiro
Salviano Soares
António Valente
Vasco Amorim
Vitor Filipe
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_132

Premium Partner