Skip to main content
Top

2022 | OriginalPaper | Chapter

Automated Endurance Testing and an Outlook to AI

Authors : Fabian Pfitz, Schaefer Max

Published in: 12th International Munich Chassis Symposium 2021

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the 21st century, also known as the century of automation, automated endurance testing of e.g. chassis components will become more and more important in order to be competitive to other vehicle manufacturers. Automation can not only can guarantee the reproducibility between different test runs and thus shortens the development time and costs of vehicle components, but also enables us to test complex maneuvers of an interacting vehicle fleet e.g. highway pilot (ADAS). Thus, automated testing will become absolutely mandatory in future. In the following, we will discuss in detail the newly and self-developed software components that enables us to automate the testing of e.g. chassis components. Finally, we will give an overview of the advantages and disadvantages of the proposed solution and will discuss how to embed artificial intelligence (AI) into a predictive control design. We will highlight the difference between learning-based and non-learning based control and will end with simulation and experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Köhl M (1991) Anzahl Wiederholungen bei der Versuchsplanung. Verlag Paul Parey 110(1):95–103 Köhl M (1991) Anzahl Wiederholungen bei der Versuchsplanung. Verlag Paul Parey 110(1):95–103
[2]
go back to reference Bhattacharyya SP et al (2001) Linear control theory: structure, robustness, and optimization Bhattacharyya SP et al (2001) Linear control theory: structure, robustness, and optimization
[3]
go back to reference Capcha MA et al (2017) Comparison of model-based and non-model-based strategies for nonlinear control of a three-tank system. 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4 Capcha MA et al (2017) Comparison of model-based and non-model-based strategies for nonlinear control of a three-tank system. 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4
[4]
[5]
go back to reference Forbes MG et al (2015) Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48:531–538 Forbes MG et al (2015) Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48:531–538
[6]
go back to reference Feller C, Ebenbauer C (2016) Relaxed logarithmic barrier function based model predictive control of linear systems. IEEE Transactions on Automation Control 62:1223–1238MathSciNetCrossRef Feller C, Ebenbauer C (2016) Relaxed logarithmic barrier function based model predictive control of linear systems. IEEE Transactions on Automation Control 62:1223–1238MathSciNetCrossRef
[7]
go back to reference Feller C, Ebenbauer C (2017) A stabilizing iteration scheme for model predictive control based on relaxed barrier function. Automatica 80:328–339MathSciNetCrossRef Feller C, Ebenbauer C (2017) A stabilizing iteration scheme for model predictive control based on relaxed barrier function. Automatica 80:328–339MathSciNetCrossRef
[8]
go back to reference Pfitz F, Braun M, Ebenbauer C (2019) Relaxed barrier MPC for reference tracking: Theoretical and experimental studies. VDI-Berichte 2349 AUTOREG vol. Mannheim Germany, pp. 97–110 Pfitz F, Braun M, Ebenbauer C (2019) Relaxed barrier MPC for reference tracking: Theoretical and experimental studies. VDI-Berichte 2349 AUTOREG vol. Mannheim Germany, pp. 97–110
[9]
go back to reference Maciejowski JM (2002) Predictive Control: With Constraints Maciejowski JM (2002) Predictive Control: With Constraints
[10]
[11]
go back to reference Pajeca H, Besselink I (2012) Tire and vehicle dynamics Pajeca H, Besselink I (2012) Tire and vehicle dynamics
[12]
go back to reference Ebenbauer C, Pfitz F, Yu S (2020) Control of Unknown (Linear) Systems with Receding Horizon Learning Ebenbauer C, Pfitz F, Yu S (2020) Control of Unknown (Linear) Systems with Receding Horizon Learning
[13]
go back to reference Terzi E, Farina M, Fagiano L, Scattolini R (2019) Learning-based predictive control for linear systems: a unitary approach. Automatica 108(11):108473 Terzi E, Farina M, Fagiano L, Scattolini R (2019) Learning-based predictive control for linear systems: a unitary approach. Automatica 108(11):108473
[14]
go back to reference Benosman M (2016) Learning-based adaptive control: an extremum seeking approach – theory and applications. Elsevier Science Benosman M (2016) Learning-based adaptive control: an extremum seeking approach – theory and applications. Elsevier Science
[15]
go back to reference Mosca E (1994) Optimal, predictive, and adaptive control. Prentice-Hall, Inc Mosca E (1994) Optimal, predictive, and adaptive control. Prentice-Hall, Inc
[16]
go back to reference Peterka V (1984) Predictor-based self-tuning control. Automatica 20(1):39–50CrossRef Peterka V (1984) Predictor-based self-tuning control. Automatica 20(1):39–50CrossRef
[17]
[18]
[19]
go back to reference Bittanti S, Bolzern P, Campi M (1990) Recursive least-squares identification algorithms with incomplete excitation: convergence analysis and application to adaptive control. IEEE Transactions on Automatic Control 35(12):1371–1373MathSciNetCrossRef Bittanti S, Bolzern P, Campi M (1990) Recursive least-squares identification algorithms with incomplete excitation: convergence analysis and application to adaptive control. IEEE Transactions on Automatic Control 35(12):1371–1373MathSciNetCrossRef
[20]
go back to reference Bittanti S, Campi M (2006) Adaptive control of linear time invariant systems: The “bet on the best" principle. Communications in Information and Systems 6(4):299–320MathSciNetCrossRef Bittanti S, Campi M (2006) Adaptive control of linear time invariant systems: The “bet on the best" principle. Communications in Information and Systems 6(4):299–320MathSciNetCrossRef
Metadata
Title
Automated Endurance Testing and an Outlook to AI
Authors
Fabian Pfitz
Schaefer Max
Copyright Year
2022
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-64550-5_11