Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2016

01-08-2016

Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons

Authors: Timothy H. Rumbell, Danel Draguljić, Aniruddha Yadav, Patrick R. Hof, Jennifer I. Luebke, Christina M. Weaver

Published in: Journal of Computational Neuroscience | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Conductance-based compartment modeling requires tuning of many parameters to fit the neuron model to target electrophysiological data. Automated parameter optimization via evolutionary algorithms (EAs) is a common approach to accomplish this task, using error functions to quantify differences between model and target. We present a three-stage EA optimization protocol for tuning ion channel conductances and kinetics in a generic neuron model with minimal manual intervention. We use the technique of Latin hypercube sampling in a new way, to choose weights for error functions automatically so that each function influences the parameter search to a similar degree. This protocol requires no specialized physiological data collection and is applicable to commonly-collected current clamp data and either single- or multi-objective optimization. We applied the protocol to two representative pyramidal neurons from layer 3 of the prefrontal cortex of rhesus monkeys, in which action potential firing rates are significantly higher in aged compared to young animals. Using an idealized dendritic topology and models with either 4 or 8 ion channels (10 or 23 free parameters respectively), we produced populations of parameter combinations fitting the target datasets in less than 80 hours of optimization each. Passive parameter differences between young and aged models were consistent with our prior results using simpler models and hand tuning. We analyzed parameter values among fits to a single neuron to facilitate refinement of the underlying model, and across fits to multiple neurons to show how our protocol will lead to predictions of parameter differences with aging in these neurons.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abouzeid, A., & Kath, W.L. (2014). Fully automated multi-objective fitting of morphologically realistic hippocampal CA1 pyramidal cell models. In 2014 Neuroscience meeting planner, (Vol. 372 p. 14). Abouzeid, A., & Kath, W.L. (2014). Fully automated multi-objective fitting of morphologically realistic hippocampal CA1 pyramidal cell models. In 2014 Neuroscience meeting planner, (Vol. 372 p. 14).
go back to reference Achard, P., & De Schutter, E. (2008). Calcium, synaptic plasticity and intrinsic homeostasis in purkinje neuron models. Frontiers in computational neuroscience 2 (December) 8. Achard, P., & De Schutter, E. (2008). Calcium, synaptic plasticity and intrinsic homeostasis in purkinje neuron models. Frontiers in computational neuroscience 2 (December) 8.
go back to reference Achard, P., Van Geit, W., & LeMasson, G. (2010). Parameter searching. In De Schutter, E (Ed.) Computational Modeling Methods for Neuroscientists Press, MIT, Cambridge, MA, 2 (pp. 31–60). Achard, P., Van Geit, W., & LeMasson, G. (2010). Parameter searching. In De Schutter, E (Ed.) Computational Modeling Methods for Neuroscientists Press, MIT, Cambridge, MA, 2 (pp. 31–60).
go back to reference Ahern, C.A., Payandeh, J., Bosmans, F., & Chanda, B. (2016). The hitchhiker’s guide to the voltage-gated sodium channel galaxy. Journal of General Physiology, 147(1), 1–24.CrossRefPubMed Ahern, C.A., Payandeh, J., Bosmans, F., & Chanda, B. (2016). The hitchhiker’s guide to the voltage-gated sodium channel galaxy. Journal of General Physiology, 147(1), 1–24.CrossRefPubMed
go back to reference Almog, M., & Korngreen, A. (2014). A quantitative description of dendritic conductances and its application to dendritic excitation in layer 5 pyramidal neurons. Journal of Neuroscience, 34(1), 182–196.CrossRefPubMed Almog, M., & Korngreen, A. (2014). A quantitative description of dendritic conductances and its application to dendritic excitation in layer 5 pyramidal neurons. Journal of Neuroscience, 34(1), 182–196.CrossRefPubMed
go back to reference Amatrudo, J.M., Weaver, C.M., Crimins, J.L., Hof, P.R., Rosene, D.L., & Luebke, J.I. (2012). Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices. Journal of Neuroscience, 32(40), 13,644–13,660.CrossRef Amatrudo, J.M., Weaver, C.M., Crimins, J.L., Hof, P.R., Rosene, D.L., & Luebke, J.I. (2012). Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices. Journal of Neuroscience, 32(40), 13,644–13,660.CrossRef
go back to reference Amendola, J., Woodhouse, A., Marin-Eauclaire, M.F., & Goaillard, J.M. (2012). Ca 2+/cAMP-Sensitive covariation of I A and I H voltage dependences tunes rebound firing in dopaminergic neurons. Journal of Neuroscience, 32(6), 2166–2181.CrossRefPubMed Amendola, J., Woodhouse, A., Marin-Eauclaire, M.F., & Goaillard, J.M. (2012). Ca 2+/cAMP-Sensitive covariation of I A and I H voltage dependences tunes rebound firing in dopaminergic neurons. Journal of Neuroscience, 32(6), 2166–2181.CrossRefPubMed
go back to reference Bahl, A., Stemmler, M.B., Herz, A.V.M., & Roth, A. (2012). Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. Journal of Neuroscience Methods, 210(1), 22–34.CrossRefPubMed Bahl, A., Stemmler, M.B., Herz, A.V.M., & Roth, A. (2012). Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. Journal of Neuroscience Methods, 210(1), 22–34.CrossRefPubMed
go back to reference Brookings, T., Goeritz, M.L., & Marder, E. (2014). Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment. Journal of Neurophysiology, 112, 2332–2348.CrossRefPubMedPubMedCentral Brookings, T., Goeritz, M.L., & Marder, E. (2014). Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment. Journal of Neurophysiology, 112, 2332–2348.CrossRefPubMedPubMedCentral
go back to reference Buhry, L., Pace, M., & Saïghi, S. (2012). Global parameter estimation of an Hodgkin-Huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits. Neurocomputing, 81, 75–85.CrossRef Buhry, L., Pace, M., & Saïghi, S. (2012). Global parameter estimation of an Hodgkin-Huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits. Neurocomputing, 81, 75–85.CrossRef
go back to reference Burke, R.E. (2000). Comparison of alternative designs for reducing complex neurons to equivalent cables. Journal of Computational Neuroscience, 9(1), 31–47.CrossRefPubMed Burke, R.E. (2000). Comparison of alternative designs for reducing complex neurons to equivalent cables. Journal of Computational Neuroscience, 9(1), 31–47.CrossRefPubMed
go back to reference Bush, P.C., & Sejnowski, T.J. (1993). Reduced compartmental models of neocortical pyramidal cells. Journal of Neuroscience Methods, 46(2), 159–166.CrossRefPubMed Bush, P.C., & Sejnowski, T.J. (1993). Reduced compartmental models of neocortical pyramidal cells. Journal of Neuroscience Methods, 46(2), 159–166.CrossRefPubMed
go back to reference Carnevale, N.T., & Hines, M.L. (2006). The NEURON book. Cambridge: Cambridge University Press.CrossRef Carnevale, N.T., & Hines, M.L. (2006). The NEURON book. Cambridge: Cambridge University Press.CrossRef
go back to reference Chang, Y.M., Rosene, D.L., Killiany, R.J., La, Mangiamele, & Luebke, J.I. (2005). Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cerebral Cortex, 15(4), 409–418.CrossRefPubMed Chang, Y.M., Rosene, D.L., Killiany, R.J., La, Mangiamele, & Luebke, J.I. (2005). Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cerebral Cortex, 15(4), 409–418.CrossRefPubMed
go back to reference Coskren, P.J., Luebke, J.I., Kabaso, D., Wearne, S.L., Yadav, A., Rumbell, T., Hof, P.R., & Weaver, C.M. (2015). Functional consequences of age-related morphologic changes to pyramidal neurons of the rhesus monkey prefrontal cortex. Journal of Computational Neuroscience, 38(2), 263–283.CrossRefPubMed Coskren, P.J., Luebke, J.I., Kabaso, D., Wearne, S.L., Yadav, A., Rumbell, T., Hof, P.R., & Weaver, C.M. (2015). Functional consequences of age-related morphologic changes to pyramidal neurons of the rhesus monkey prefrontal cortex. Journal of Computational Neuroscience, 38(2), 263–283.CrossRefPubMed
go back to reference Destexhe, A. (2001). Simplified models of neocortical pyramidal cells preserving somatodendritic voltage attenuation. Neurocomputing, 38-40, 167–173.CrossRef Destexhe, A. (2001). Simplified models of neocortical pyramidal cells preserving somatodendritic voltage attenuation. Neurocomputing, 38-40, 167–173.CrossRef
go back to reference Druckmann, S., Banitt, Y., Gidon, A., Schürmann, F., Markram, H., & Segev, I. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience, 1(1), 7–18.CrossRefPubMedPubMedCentral Druckmann, S., Banitt, Y., Gidon, A., Schürmann, F., Markram, H., & Segev, I. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience, 1(1), 7–18.CrossRefPubMedPubMedCentral
go back to reference Druckmann, S., Berger, T.K., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2008). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cybernetics, 99(4-5), 371–379.CrossRefPubMed Druckmann, S., Berger, T.K., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2008). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cybernetics, 99(4-5), 371–379.CrossRefPubMed
go back to reference Druckmann, S., Berger, T.K., Schürmann, F., Hill, S., Markram, H., & Segev, I. (2011). Effective stimuli for constructing reliable neuron models. PLoS Computational Biology, 7(8), e1002,133.CrossRef Druckmann, S., Berger, T.K., Schürmann, F., Hill, S., Markram, H., & Segev, I. (2011). Effective stimuli for constructing reliable neuron models. PLoS Computational Biology, 7(8), e1002,133.CrossRef
go back to reference Eiben, A.E., & Smith, J.E. (2003). Introduction to Evolutionary Computing, 1st. Berlin: Springer.CrossRef Eiben, A.E., & Smith, J.E. (2003). Introduction to Evolutionary Computing, 1st. Berlin: Springer.CrossRef
go back to reference Friedrich, P., Vella, M., Gulyás, A.I., Freund, T.F., & Káli, S. (2014). A flexible, interactive software tool for fitting the parameters of neuronal models. Frontiers in Neuroinformatics, 8(63), 1–19. Friedrich, P., Vella, M., Gulyás, A.I., Freund, T.F., & Káli, S. (2014). A flexible, interactive software tool for fitting the parameters of neuronal models. Frontiers in Neuroinformatics, 8(63), 1–19.
go back to reference Gilman, J.P., Medalla, M., & Luebke, J.I. (2016). Area-specific features of pyramidal neurons - a comparative study in mouse and rhesus monkey. Cerebral Cortex in Press. Gilman, J.P., Medalla, M., & Luebke, J.I. (2016). Area-specific features of pyramidal neurons - a comparative study in mouse and rhesus monkey. Cerebral Cortex in Press.
go back to reference Goldman, M.S., Golowasch, J., Marder, E., & Abbott, L.F. (2001). Global structure, robustness, and modulation of neuronal models. Journal of Neuroscience, 21(14), 5229–5238.PubMed Goldman, M.S., Golowasch, J., Marder, E., & Abbott, L.F. (2001). Global structure, robustness, and modulation of neuronal models. Journal of Neuroscience, 21(14), 5229–5238.PubMed
go back to reference Günay, C., Edgerton, J.R., & Jaeger, D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. Journal of Neuroscience, 28(30), 7476–7491.CrossRefPubMed Günay, C., Edgerton, J.R., & Jaeger, D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. Journal of Neuroscience, 28(30), 7476–7491.CrossRefPubMed
go back to reference Handl, J., Kell, D.B., & Knowles, J. (2007). Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(2), 279–291.CrossRefPubMed Handl, J., Kell, D.B., & Knowles, J. (2007). Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(2), 279–291.CrossRefPubMed
go back to reference Hay, E., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Computational Biology, 7(7), e1002,107.CrossRef Hay, E., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Computational Biology, 7(7), e1002,107.CrossRef
go back to reference Hay, E., Schürmann, F., Markram, H., & Segev, I. (2013). Preserving axosomatic spiking features despite diverse dendritic morphology. Journal of Neurophysiology, 109(12), 2972–2981.CrossRefPubMed Hay, E., Schürmann, F., Markram, H., & Segev, I. (2013). Preserving axosomatic spiking features despite diverse dendritic morphology. Journal of Neurophysiology, 109(12), 2972–2981.CrossRefPubMed
go back to reference Hendrickson, E.B., Edgerton, J.R., & Jaeger, D. (2011). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of Computational Neuroscience, 30(2), 301–321.CrossRefPubMed Hendrickson, E.B., Edgerton, J.R., & Jaeger, D. (2011). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. Journal of Computational Neuroscience, 30(2), 301–321.CrossRefPubMed
go back to reference Hendrickson, E.B., Edgerton, J.R., & Jaeger, D. (2011). The use of automated parameter searches to improve ion channel kinetics for neural modeling. Journal of Computational Neuroscience, 31(2), 329–346.CrossRefPubMed Hendrickson, E.B., Edgerton, J.R., & Jaeger, D. (2011). The use of automated parameter searches to improve ion channel kinetics for neural modeling. Journal of Computational Neuroscience, 31(2), 329–346.CrossRefPubMed
go back to reference Hollander, M., Wolfe, D.A., & Chicken, E. (2014). Nonparametric statistical methods, 3rd. Hoboken: John Wiley and Sons. Hollander, M., Wolfe, D.A., & Chicken, E. (2014). Nonparametric statistical methods, 3rd. Hoboken: John Wiley and Sons.
go back to reference Huys, Q.J.M., & Paninski, L. (2009). Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Computational Biology, 5(5), e1000,379.CrossRef Huys, Q.J.M., & Paninski, L. (2009). Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Computational Biology, 5(5), e1000,379.CrossRef
go back to reference Huys, Q.J.M., Ahrens, M.B., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology, 96(2), 872–890.CrossRefPubMed Huys, Q.J.M., Ahrens, M.B., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology, 96(2), 872–890.CrossRefPubMed
go back to reference Johnson, M.E., Moore, L.M., & Ylvisaker, D. (1990). Minimax and maximin distance designs. Journal of Statistical Planning and Inference, 26(2), 131–148.CrossRef Johnson, M.E., Moore, L.M., & Ylvisaker, D. (1990). Minimax and maximin distance designs. Journal of Statistical Planning and Inference, 26(2), 131–148.CrossRef
go back to reference Jolliffe, I.T. (2002). Principal Component Analysis, 2nd edn. Springer. Jolliffe, I.T. (2002). Principal Component Analysis, 2nd edn. Springer.
go back to reference Kabaso, D., Coskren, P.J., Henry, B.I., Hof, P.R., & Wearne, S.L. (2009). The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cerebral Cortex, 19(10), 2248–2268.CrossRefPubMedPubMedCentral Kabaso, D., Coskren, P.J., Henry, B.I., Hof, P.R., & Wearne, S.L. (2009). The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cerebral Cortex, 19(10), 2248–2268.CrossRefPubMedPubMedCentral
go back to reference Keren, N., Peled, N., & Korngreen, A. (2005). Constraining compartmental models using multiple voltage recordings and genetic algorithms. Journal of Neurophysiology, 94(6), 3730–3742.CrossRefPubMed Keren, N., Peled, N., & Korngreen, A. (2005). Constraining compartmental models using multiple voltage recordings and genetic algorithms. Journal of Neurophysiology, 94(6), 3730–3742.CrossRefPubMed
go back to reference Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., & Abarbanel, H.D.I. (2012). Dynamical estimation of neuron and network properties II: Path integral Monte Carlo methods. Biological Cybernetics, 106(3), 155–167.CrossRefPubMed Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., & Abarbanel, H.D.I. (2012). Dynamical estimation of neuron and network properties II: Path integral Monte Carlo methods. Biological Cybernetics, 106(3), 155–167.CrossRefPubMed
go back to reference LeMasson, G., & Maex, R. (2001). Introduction to equation solving and parameter fitting. In De Schutter, E (Ed.) Computational neuroscience: realistic modeling for experimentalists (pp. 1–21). London: CRC Press. LeMasson, G., & Maex, R. (2001). Introduction to equation solving and parameter fitting. In De Schutter, E (Ed.) Computational neuroscience: realistic modeling for experimentalists (pp. 1–21). London: CRC Press.
go back to reference Loeppky, J.L., Sacks, J., & Welch, W.J. (2009). Choosing the sample size of a computer experiment: A practical guide. Technometrics, 51(4), 366–376.CrossRef Loeppky, J.L., Sacks, J., & Welch, W.J. (2009). Choosing the sample size of a computer experiment: A practical guide. Technometrics, 51(4), 366–376.CrossRef
go back to reference Malik, A., Shim, K., Prinz, A.A., & Smolinski, T.G. (2013). Multi-objective evolutionary algorithms for analysis of conductance correlations involved in recovery of bursting after neuromodulator deprivation in lobster stomatogastric neuron models. BMC Neuroscience, 14(Suppl 1), P370.CrossRefPubMedCentral Malik, A., Shim, K., Prinz, A.A., & Smolinski, T.G. (2013). Multi-objective evolutionary algorithms for analysis of conductance correlations involved in recovery of bursting after neuromodulator deprivation in lobster stomatogastric neuron models. BMC Neuroscience, 14(Suppl 1), P370.CrossRefPubMedCentral
go back to reference Marder, E., & Goaillard, J.M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience, 7(July), 563–574.CrossRefPubMed Marder, E., & Goaillard, J.M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience, 7(July), 563–574.CrossRefPubMed
go back to reference Martina, M., & Jonas, P. (1997). Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. Journal of Physiology, 505(3), 593–603.CrossRefPubMedPubMedCentral Martina, M., & Jonas, P. (1997). Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. Journal of Physiology, 505(3), 593–603.CrossRefPubMedPubMedCentral
go back to reference Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., & Abarbanel, H.D.I. (2014). Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biological Cybernetics, 108, 495–516.CrossRefPubMed Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., & Abarbanel, H.D.I. (2014). Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biological Cybernetics, 108, 495–516.CrossRefPubMed
go back to reference Mensi, S., Naud, R., Pozzorini, C., Avermann, M., Petersen, C.C.H., & Gerstner, W. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of Neurophysiology, 107(6), 1756–1775.CrossRefPubMed Mensi, S., Naud, R., Pozzorini, C., Avermann, M., Petersen, C.C.H., & Gerstner, W. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of Neurophysiology, 107(6), 1756–1775.CrossRefPubMed
go back to reference Mezura-Montes, E., Reyes-Sierra, M., & Coello Coello, C.A. (2008). Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In Chakraborty, U (Ed.) Advances in differential evolution (pp. 173–196). Berlin: Springer. Mezura-Montes, E., Reyes-Sierra, M., & Coello Coello, C.A. (2008). Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In Chakraborty, U (Ed.) Advances in differential evolution (pp. 173–196). Berlin: Springer.
go back to reference Morris, M.D., & Mitchell, T.J. (1995). Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 43(3), 381–402.CrossRef Morris, M.D., & Mitchell, T.J. (1995). Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 43(3), 381–402.CrossRef
go back to reference O’Leary, T., WA, H., Franci, A., & Marder, E. (2014). Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron, 82(4), 809–821.CrossRefPubMedPubMedCentral O’Leary, T., WA, H., Franci, A., & Marder, E. (2014). Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron, 82(4), 809–821.CrossRefPubMedPubMedCentral
go back to reference Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., Markram, H., & Destexhe, A. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99(4-5), 427–441.CrossRefPubMed Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., Markram, H., & Destexhe, A. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99(4-5), 427–441.CrossRefPubMed
go back to reference Price, K.V. (2008). Eliminating drift bias from the differential evoluation algorithm. In Chakraborty, U K (Ed.) Advances in differential evolution, 1st edn, springer-verlag, berlin heidelberg, chap, (Vol. 2 pp. 33–88). Price, K.V. (2008). Eliminating drift bias from the differential evoluation algorithm. In Chakraborty, U K (Ed.) Advances in differential evolution, 1st edn, springer-verlag, berlin heidelberg, chap, (Vol. 2 pp. 33–88).
go back to reference Price, K.V., Storn, R.M., & Lampinen, J.A. (2005). Differential Evolution. Berlin: Springer. Price, K.V., Storn, R.M., & Lampinen, J.A. (2005). Differential Evolution. Berlin: Springer.
go back to reference Prinz, A.A., Billimoria, C.P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015.CrossRefPubMed Prinz, A.A., Billimoria, C.P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015.CrossRefPubMed
go back to reference Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R., & Wearne, S.L. (2008). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PloS One, 3(4), e1997.CrossRefPubMedPubMedCentral Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R., & Wearne, S.L. (2008). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PloS One, 3(4), e1997.CrossRefPubMedPubMedCentral
go back to reference Rodriguez, A., Ehlenberger, D.B., Hof, P.R., & Wearne, S.L. (2009). Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods, 184(1), 169–175.CrossRefPubMedPubMedCentral Rodriguez, A., Ehlenberger, D.B., Hof, P.R., & Wearne, S.L. (2009). Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods, 184(1), 169–175.CrossRefPubMedPubMedCentral
go back to reference Schulz, D.J., Goaillard, J.M., & Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature Neuroscience, 9(3), 356–362.CrossRefPubMed Schulz, D.J., Goaillard, J.M., & Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature Neuroscience, 9(3), 356–362.CrossRefPubMed
go back to reference Sekulić, V., Lawrence, J.J., & Skinner, F.K. (2014). Using multi-compartment ensemble modeling as an investigative tool of spatially distributed biophysical balances: application to hippocampal Oriens-Lacunosum/Moleculare (o-LM) cells. PLoS One, 9(10), e106,567.CrossRef Sekulić, V., Lawrence, J.J., & Skinner, F.K. (2014). Using multi-compartment ensemble modeling as an investigative tool of spatially distributed biophysical balances: application to hippocampal Oriens-Lacunosum/Moleculare (o-LM) cells. PLoS One, 9(10), e106,567.CrossRef
go back to reference Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A., Martone, M., & Carnevale, N.T. (2013). Introducing the neuroscience gateway. In CEUR Workshop proceedings, (Vol. 993 p. 7). Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A., Martone, M., & Carnevale, N.T. (2013). Introducing the neuroscience gateway. In CEUR Workshop proceedings, (Vol. 993 p. 7).
go back to reference Smolinski, T.G., & Prinz, A.A. (2009). Computational Intelligence in modeling of biological neurons: a case study of an invertebrate pacemaker neuron. Proceedings of the International Joint Conference on Neural Networks 2964–2970. Smolinski, T.G., & Prinz, A.A. (2009). Computational Intelligence in modeling of biological neurons: a case study of an invertebrate pacemaker neuron. Proceedings of the International Joint Conference on Neural Networks 2964–2970.
go back to reference Swensen, A.M., & Bean, B.P. (2005). Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. Journal of Neuroscience, 25(14), 3509–3520.CrossRefPubMed Swensen, A.M., & Bean, B.P. (2005). Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. Journal of Neuroscience, 25(14), 3509–3520.CrossRefPubMed
go back to reference Tobin, A.E., Van Hooser, S.D., & Calabrese, R.L. (2006). Creation and reduction of a morphologically detailed model of a leech heart interneuron. Journal of Neurophysiology, 96(4), 2107–2120.CrossRefPubMedPubMedCentral Tobin, A.E., Van Hooser, S.D., & Calabrese, R.L. (2006). Creation and reduction of a morphologically detailed model of a leech heart interneuron. Journal of Neurophysiology, 96(4), 2107–2120.CrossRefPubMedPubMedCentral
go back to reference Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., & Abarbanel, H.D.I. (2011). Dynamical estimation of neuron and network properties i: variational methods. Biological Cybernetics, 105(3-4), 217–237.CrossRefPubMed Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., & Abarbanel, H.D.I. (2011). Dynamical estimation of neuron and network properties i: variational methods. Biological Cybernetics, 105(3-4), 217–237.CrossRefPubMed
go back to reference Traub, R.D., Jefferys, J.G., Miles, R., Whittington, M.A., & Tóth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neurone. Journal of Physiology, 481(1), 79–95.CrossRefPubMedPubMedCentral Traub, R.D., Jefferys, J.G., Miles, R., Whittington, M.A., & Tóth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neurone. Journal of Physiology, 481(1), 79–95.CrossRefPubMedPubMedCentral
go back to reference Traub, R.D., Buhl, E.H., Gloveli, T., & Whittington, M.A. (2003). Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. Journal of neurophysiology, 89(2), 909–921.CrossRefPubMed Traub, R.D., Buhl, E.H., Gloveli, T., & Whittington, M.A. (2003). Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. Journal of neurophysiology, 89(2), 909–921.CrossRefPubMed
go back to reference Van Geit, W., Achard, P., & De Schutter, E. (2007). Neurofitter: A parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in Neuroinformatics, 1(1), 1–18.PubMedPubMedCentral Van Geit, W., Achard, P., & De Schutter, E. (2007). Neurofitter: A parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in Neuroinformatics, 1(1), 1–18.PubMedPubMedCentral
go back to reference Van Geit, W., De Schutter, E., & Achard, P. (2008). Automated neuron model optimization techniques: A review. Biological Cybernetics, 99, 241–251.CrossRefPubMed Van Geit, W., De Schutter, E., & Achard, P. (2008). Automated neuron model optimization techniques: A review. Biological Cybernetics, 99, 241–251.CrossRefPubMed
go back to reference Vanier, M.C., & Bower, J.M. (1999). A comparative survey of automated parameter-search methods for compartmental neuron models. Journal of Computational Neuroscience, 7(2), 149– 171.CrossRefPubMed Vanier, M.C., & Bower, J.M. (1999). A comparative survey of automated parameter-search methods for compartmental neuron models. Journal of Computational Neuroscience, 7(2), 149– 171.CrossRefPubMed
go back to reference Weaver, C.M., & Wearne, S.L. (2006). The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing, 69(10-12), 1053–1057.CrossRef Weaver, C.M., & Wearne, S.L. (2006). The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing, 69(10-12), 1053–1057.CrossRef
go back to reference Yadav, A., Weaver, C.M., Gao, Y.Z., Luebke, J.I., & Wearne, S.L. (2008). Why are pyramidal cell firing rates increased with aging, and what can we do about it? BMC Neuroscience, 9(Suppl 1), P51.CrossRef Yadav, A., Weaver, C.M., Gao, Y.Z., Luebke, J.I., & Wearne, S.L. (2008). Why are pyramidal cell firing rates increased with aging, and what can we do about it? BMC Neuroscience, 9(Suppl 1), P51.CrossRef
go back to reference Yadav, A., Weaver, C.M., Gao, Y.Z., Luebke, J.I., & Hof, P.R. (2010). Age-related morphologic changes alter robustness of neuronal function. BMC Neuroscience, 11(Suppl 1), P140.CrossRefPubMedCentral Yadav, A., Weaver, C.M., Gao, Y.Z., Luebke, J.I., & Hof, P.R. (2010). Age-related morphologic changes alter robustness of neuronal function. BMC Neuroscience, 11(Suppl 1), P140.CrossRefPubMedCentral
go back to reference Zielinski, K., & Laur, R. (2008). Stopping criteria for differential evolution in constrained single-objective optimization. In Chakraborty, U K (Ed.) Advances in Differential Evolution, (Vol. 4 pp. 111–138). Berlin: Springer. Zielinski, K., & Laur, R. (2008). Stopping criteria for differential evolution in constrained single-objective optimization. In Chakraborty, U K (Ed.) Advances in Differential Evolution, (Vol. 4 pp. 111–138). Berlin: Springer.
Metadata
Title
Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons
Authors
Timothy H. Rumbell
Danel Draguljić
Aniruddha Yadav
Patrick R. Hof
Jennifer I. Luebke
Christina M. Weaver
Publication date
01-08-2016
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2016
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0605-9

Other articles of this Issue 1/2016

Journal of Computational Neuroscience 1/2016 Go to the issue

Premium Partner