Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

29-08-2018 | Regular Paper | Issue 4/2018

International Journal of Data Science and Analytics 4/2018

Automated parameter tuning in one-class support vector machine: an application for damage detection

Journal:
International Journal of Data Science and Analytics > Issue 4/2018
Authors:
Ali Anaissi, Nguyen Lu Dang Khoa, Yang Wang
Important notes
This paper is an extension version of the PAKDD’2017 Long Presentation paper “Adaptive One-Class Support Vector Machine for Damage Detection in Structural Health Monitoring” [4].

Abstract

Machine learning algorithms have been employed extensively in the area of structural health monitoring to compare new measurements with baselines to detect any structural change. One-class support vector machine (OCSVM) with Gaussian kernel function is a promising machine learning method which can learn only from one-class data and then classify any new query samples. However, generalization performance of OCSVM is profoundly influenced by its Gaussian model parameter \(\sigma \). This paper proposes a new algorithm named appropriate distance to the enclosing surface (ADES) for tuning the Gaussian model parameter. The semantic idea of this algorithm is based on inspecting the spatial locations of the edge and interior samples, and their distances to the enclosing surface of OCSVM. The algorithm selects the optimal value of \(\sigma \) which generates a hyperplane that is maximally distant from the interior samples but close to the edge samples. The sets of interior and edge samples are identified using a hard margin linear support vector machine. The algorithm was successfully validated using sensing data collected from the Sydney Harbour Bridge and vehicle-mounted sensors for damage detection, in addition to five public data sets. The results obtained by ADES are compared to those of variance–mean, maximum distance and MIES methods. The results of the ADES approach outperform these state-of-the-art methods, especially on the bridge and road data sets. Experiments on these data sets show that an average 3% better accuracy is achieved by ADES over these state-of-the-art methods. The designed ADES algorithm is an appropriate choice to identify the optimal value of \(\sigma \) for OCSVM, especially in high-dimensional data sets.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2018

International Journal of Data Science and Analytics 4/2018 Go to the issue

Premium Partner

    Image Credits