Skip to main content
Top

2023 | OriginalPaper | Chapter

Automatic Classification of Remote Sensing Images of Landfill Sites Based on Deep Learning

Authors : Jiayuan Wang, Qiaoqiao Yong, Huanyu Wu, Run Chen

Published in: Proceedings of the 27th International Symposium on Advancement of Construction Management and Real Estate

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

China, as one of the world's largest producers of municipal solid waste, is faced with a huge amount of waste problem. Unregulated landfills not only lead to environmental hazards, but also may have landslide risks. Remote sensing technology has the characteristics of long-distance, non-contact and periodicity, which can make up for the shortage of crrent manual management methods. Therefore, this study will use deep learning combined with remote sensing images to achieve automatic classification of landfill images. The study uses CB04 and sentinel2A satellite images to construct a landfill remote sensing image dataset, and divides the dataset into training set, validation set and test set according to the ratio of 6:2:2. In this study, two classical models, Vgg and ResNet, are used to implement image classification on landfill remote sensing image datasets. The results show that (1) in this study, a method for automatic classification of remote sensing images of landfills is proposed, with a model accuracy of 86.76%, and (2) deep learning can effectively implement automatic landfill classification, and both Resnet and Vgg have shown good classification results., and (3) Resnet and Vgg can better perform the task of automatic landfill identification after introducing the optimization strategy of parameter migration. As shown above, deep learning has strong potential in the field of landfill image classification.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vyas, S., Prajapati, P., Shah, A.V., Varjani, S.: Municipal solid waste management: dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. Sci. Total Environ. 814, 152802 (2022)CrossRef Vyas, S., Prajapati, P., Shah, A.V., Varjani, S.: Municipal solid waste management: dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. Sci. Total Environ. 814, 152802 (2022)CrossRef
3.
go back to reference Franco, B., Steiner, A., Medeiros, F.: Optimization in waste landfilling partitioning in Parana State, Brazil. J. Clean. Prod. 283, 125353 (2021)CrossRef Franco, B., Steiner, A., Medeiros, F.: Optimization in waste landfilling partitioning in Parana State, Brazil. J. Clean. Prod. 283, 125353 (2021)CrossRef
4.
go back to reference Liu, B.C., Zhang, L., Wang, Q.S.: Demand gap analysis of municipal solid waste landfill in Beijing: based on the municipal solid waste generation. Waste Manage. 134, 42–51 (2021)CrossRef Liu, B.C., Zhang, L., Wang, Q.S.: Demand gap analysis of municipal solid waste landfill in Beijing: based on the municipal solid waste generation. Waste Manage. 134, 42–51 (2021)CrossRef
5.
go back to reference Cudjoe, D., Han, M.S., Chen, W.M.: Power generation from municipal solid waste landfilled in the Beijing-Tianjin-Hebei region. Energy 217, 119393 (2021)CrossRef Cudjoe, D., Han, M.S., Chen, W.M.: Power generation from municipal solid waste landfilled in the Beijing-Tianjin-Hebei region. Energy 217, 119393 (2021)CrossRef
6.
go back to reference Cheng, J.H., Shi, F.Y., Yi, J.H., Fu, H.X.: Analysis of the factors that affect the production of municipal solid waste in China. J. Clean. Prod. 259, 120808 (2020)CrossRef Cheng, J.H., Shi, F.Y., Yi, J.H., Fu, H.X.: Analysis of the factors that affect the production of municipal solid waste in China. J. Clean. Prod. 259, 120808 (2020)CrossRef
7.
go back to reference Yang, H., Xia, J., Thompson, J.R., Flower, R.J.: Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste Manage. 63, 393–396 (2017)CrossRef Yang, H., Xia, J., Thompson, J.R., Flower, R.J.: Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste Manage. 63, 393–396 (2017)CrossRef
8.
go back to reference Merry, S.M., Kavazanjian, E., Jr., Fritz, W.U.: Reconnaissance of the July 10, 2000, Payatas landfill failure. J. Perform. Constr. Facil. 19(2), 100–107 (2005)CrossRef Merry, S.M., Kavazanjian, E., Jr., Fritz, W.U.: Reconnaissance of the July 10, 2000, Payatas landfill failure. J. Perform. Constr. Facil. 19(2), 100–107 (2005)CrossRef
9.
go back to reference Zhan, L., et al.: The 2015 Shenzhen catastrophic landslide in a construction waste dump: reconstitution of dump structure and failure mechanisms via geotechnical investigations. Eng. Geol. 238, 15–26 (2018)CrossRef Zhan, L., et al.: The 2015 Shenzhen catastrophic landslide in a construction waste dump: reconstitution of dump structure and failure mechanisms via geotechnical investigations. Eng. Geol. 238, 15–26 (2018)CrossRef
10.
go back to reference Jayaweera, M., et al.: Management of municipal solid waste open dumps immediately after the collapse: an integrated approach from Meethotamulla open dump Sri Lanka. Waste Manag. 95, 227–240 (2019)CrossRef Jayaweera, M., et al.: Management of municipal solid waste open dumps immediately after the collapse: an integrated approach from Meethotamulla open dump Sri Lanka. Waste Manag. 95, 227–240 (2019)CrossRef
11.
go back to reference Filkin, T., Sliusar, N., Huber-Humer, M., Korotaev, M.R.: Estimation of dump and landfill waste volumes using unmanned aerial systems. Waste Manage. 139, 301–308 (2022)CrossRef Filkin, T., Sliusar, N., Huber-Humer, M., Korotaev, M.R.: Estimation of dump and landfill waste volumes using unmanned aerial systems. Waste Manage. 139, 301–308 (2022)CrossRef
12.
go back to reference Manzo, C., Mei, A., Zampetti, E., Bassani, C., Paciucci, L., Manetti, P.: Top-down approach from satellite to terrestrial rover application for environmental monitoring of landfills. Sci. Total Environ. 584–585, 1333–1348 (2017)CrossRef Manzo, C., Mei, A., Zampetti, E., Bassani, C., Paciucci, L., Manetti, P.: Top-down approach from satellite to terrestrial rover application for environmental monitoring of landfills. Sci. Total Environ. 584–585, 1333–1348 (2017)CrossRef
13.
go back to reference Cadau, E.G., et al.: SIMDEO: an integrated system for landfill detection and monitoring using EO data. In: 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3305–3308 (2013) Cadau, E.G., et al.: SIMDEO: an integrated system for landfill detection and monitoring using EO data. In: 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3305–3308 (2013)
14.
15.
go back to reference Karimi, N., Ng, K., Richter, A., Williams, J., Ibrahim, H.: Thermal heterogeneity in the proximity of municipal solid waste landfills on forest and agricultural lands. J. Environ. Manage. 287, 112320 (2021)CrossRef Karimi, N., Ng, K., Richter, A., Williams, J., Ibrahim, H.: Thermal heterogeneity in the proximity of municipal solid waste landfills on forest and agricultural lands. J. Environ. Manage. 287, 112320 (2021)CrossRef
16.
go back to reference Karimi, N., Ng, K., Richter, A.: Development and application of an analytical framework for mapping probable illegal dumping sites using nighttime light imagery and various remote sensing indices. Waste Manage. 143(15), 195–205 (2022)CrossRef Karimi, N., Ng, K., Richter, A.: Development and application of an analytical framework for mapping probable illegal dumping sites using nighttime light imagery and various remote sensing indices. Waste Manage. 143(15), 195–205 (2022)CrossRef
17.
go back to reference Nhien, H.T., Giao, N.T.: Assessment of pollution levels and ecological potential risk of the soil influenced by landfilling in a Vietnamese Mekong Delta province. Sci. Total Environ. 845, 157263 (2022)CrossRef Nhien, H.T., Giao, N.T.: Assessment of pollution levels and ecological potential risk of the soil influenced by landfilling in a Vietnamese Mekong Delta province. Sci. Total Environ. 845, 157263 (2022)CrossRef
18.
go back to reference Gao, S., et al.: Characterization and influence of odorous gases on the working surface of a typical landfill site: a case study in a Chinese. Atmos. Environ. 262, 118628 (2021)CrossRef Gao, S., et al.: Characterization and influence of odorous gases on the working surface of a typical landfill site: a case study in a Chinese. Atmos. Environ. 262, 118628 (2021)CrossRef
19.
go back to reference Mohsen, R.A., Abbassi, B.: Prediction of greenhouse gas emissions from Ontario’s solid waste landfills using fuzzy logic based model. Waste Manage. 102, 743–750 (2020)CrossRef Mohsen, R.A., Abbassi, B.: Prediction of greenhouse gas emissions from Ontario’s solid waste landfills using fuzzy logic based model. Waste Manage. 102, 743–750 (2020)CrossRef
20.
go back to reference NgocHoang, A., KimPham, T.T., Mai, D.T.T., Nguyen, T., Tran, P.T.M.: Health risks and perceptions of residents exposed to multiple sources of air pollutions: a cross-sectional study on landfill and stone mining in Danang city, Vietnam. Environ. Res. 212(A), 113244 (2022) NgocHoang, A., KimPham, T.T., Mai, D.T.T., Nguyen, T., Tran, P.T.M.: Health risks and perceptions of residents exposed to multiple sources of air pollutions: a cross-sectional study on landfill and stone mining in Danang city, Vietnam. Environ. Res. 212(A), 113244 (2022)
21.
go back to reference Batali, L., Carastoian, A., Popa, H., Pantel, G.: Instability phenomena in municipal waste landfill. Numerical modeling in saturated and unsaturated conditions. Energy Procedia 112, 481–488 (2017)CrossRef Batali, L., Carastoian, A., Popa, H., Pantel, G.: Instability phenomena in municipal waste landfill. Numerical modeling in saturated and unsaturated conditions. Energy Procedia 112, 481–488 (2017)CrossRef
22.
go back to reference Linh, H.N., Tamura, H., Komiya, T., Saffarzadeh, A., Shimaoka, T.: Simulating the impact of heavy rain on leaching behavior of municipal solid waste incineration bottom ash (MSWI BA) in semi-aerobic landfill. Waste Manag. 113, 280–293 (2020)CrossRef Linh, H.N., Tamura, H., Komiya, T., Saffarzadeh, A., Shimaoka, T.: Simulating the impact of heavy rain on leaching behavior of municipal solid waste incineration bottom ash (MSWI BA) in semi-aerobic landfill. Waste Manag. 113, 280–293 (2020)CrossRef
23.
go back to reference Eghtesadifard, M., Afkhami, P., Bazyar, A.: An integrated approach to the selection of municipal solid waste landfills through GIS, K-Means and multi-criteria decision analysis. Environ. Res. 185, 109348 (2020)CrossRef Eghtesadifard, M., Afkhami, P., Bazyar, A.: An integrated approach to the selection of municipal solid waste landfills through GIS, K-Means and multi-criteria decision analysis. Environ. Res. 185, 109348 (2020)CrossRef
24.
go back to reference Hoogmartens, R., Eyckmans, J., Passelac, S.: Landfill taxes and enhanced waste management: combining valuable practices with respect to future waste streams. Waste Manage. 55, 345–354 (2016)CrossRef Hoogmartens, R., Eyckmans, J., Passelac, S.: Landfill taxes and enhanced waste management: combining valuable practices with respect to future waste streams. Waste Manage. 55, 345–354 (2016)CrossRef
25.
go back to reference Pivato, A., et al.: Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manage. 49, 378–389 (2016)CrossRef Pivato, A., et al.: Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manage. 49, 378–389 (2016)CrossRef
26.
go back to reference Choe, C., Byun, M., Lee, H., Lim, H.: Techno-economic and environmental assessments for sustainable bio-methanol production as landfill gas valorization. Waste Manage. 150, 90–97 (2022)CrossRef Choe, C., Byun, M., Lee, H., Lim, H.: Techno-economic and environmental assessments for sustainable bio-methanol production as landfill gas valorization. Waste Manage. 150, 90–97 (2022)CrossRef
27.
go back to reference Han, W., et al.: A context-scale-aware detector and a new benchmark for remote sensing small weak object detection in unmanned aerial vehicle images. Int. J. Appl. Earth Obs. Geoinf. 112, 102966 (2022) Han, W., et al.: A context-scale-aware detector and a new benchmark for remote sensing small weak object detection in unmanned aerial vehicle images. Int. J. Appl. Earth Obs. Geoinf. 112, 102966 (2022)
28.
go back to reference Sliusar, N., Filkin, T., Huber-Humer, M., Ritzkowski, M.: Drone technology in municipal solid waste management and landfilling: a comprehensive review. Waste Manage. 139, 1–16 (2022)CrossRef Sliusar, N., Filkin, T., Huber-Humer, M., Ritzkowski, M.: Drone technology in municipal solid waste management and landfilling: a comprehensive review. Waste Manage. 139, 1–16 (2022)CrossRef
29.
go back to reference Glanville, K., Chang, H.-C.: Chang remote sensing analysis techniques and sensor requirements to support the mapping of illegal domestic waste disposal site in Queensland, Australia. Remote Sens. 7(10), 13053–13069 (2015)CrossRef Glanville, K., Chang, H.-C.: Chang remote sensing analysis techniques and sensor requirements to support the mapping of illegal domestic waste disposal site in Queensland, Australia. Remote Sens. 7(10), 13053–13069 (2015)CrossRef
30.
go back to reference Gill, J., Faisal, K., Shaker, A., Yan, W.Y.: Detection of waste dumping locations in landfill using multi-temporal Landsat thermal images. Waste Manag. Res. 37(4), 386–393 (2019)CrossRef Gill, J., Faisal, K., Shaker, A., Yan, W.Y.: Detection of waste dumping locations in landfill using multi-temporal Landsat thermal images. Waste Manag. Res. 37(4), 386–393 (2019)CrossRef
31.
go back to reference Devesa H.A.V., Brust, M.R.: Brust mapping illegal waste dumping sites with neural-network classification of satellite imagery. In: KDD Humanitarian Mapping Workshop ‘21, 14–18 August 2021, Virtual Conference (2021) Devesa H.A.V., Brust, M.R.: Brust mapping illegal waste dumping sites with neural-network classification of satellite imagery. In: KDD Humanitarian Mapping Workshop ‘21, 14–18 August 2021, Virtual Conference (2021)
32.
go back to reference Angelino, C.V., et al.: Remote sensing for illegal dumps detection: a case study in southern Italy Geophys. EGU General Assembly 19, 2017–15579 (2017) Angelino, C.V., et al.: Remote sensing for illegal dumps detection: a case study in southern Italy Geophys. EGU General Assembly 19, 2017–15579 (2017)
33.
go back to reference Đidelija, M., Kulo, N., Mulahusić, A., Tuno, N., Topoljak, J.: Segmentation scale parameter influence on the accuracy of detecting illegal landfills on satellite imagery. A case study for Novo Sarajevo. Ecol. Inform. 70, 101755 (2022)CrossRef Đidelija, M., Kulo, N., Mulahusić, A., Tuno, N., Topoljak, J.: Segmentation scale parameter influence on the accuracy of detecting illegal landfills on satellite imagery. A case study for Novo Sarajevo. Ecol. Inform. 70, 101755 (2022)CrossRef
34.
go back to reference Sabour, M.R., Amiri, A.: Comparative study of ANN and RSM for simultaneous optimization of multiple targets in Fenton treatment of landfill leachate. Waste Manage. 65, 54–62 (2017)CrossRef Sabour, M.R., Amiri, A.: Comparative study of ANN and RSM for simultaneous optimization of multiple targets in Fenton treatment of landfill leachate. Waste Manage. 65, 54–62 (2017)CrossRef
35.
go back to reference Hani, A.Q., Nawras, S.: Assessing and predicting landfill surface temperature using remote sensing and an artificial neural network. Int. J. Remote Sens. 40(24), 9556–9571 (2019)CrossRef Hani, A.Q., Nawras, S.: Assessing and predicting landfill surface temperature using remote sensing and an artificial neural network. Int. J. Remote Sens. 40(24), 9556–9571 (2019)CrossRef
36.
go back to reference Li, H., et al.: Tsotsis computer simulation of gas generation and transport in landfills. V: use of artificial neural network and the genetic algorithm for short- and long-term forecasting and planning. Chem. Eng. Sci. 66, 2646–2659 (2011)CrossRef Li, H., et al.: Tsotsis computer simulation of gas generation and transport in landfills. V: use of artificial neural network and the genetic algorithm for short- and long-term forecasting and planning. Chem. Eng. Sci. 66, 2646–2659 (2011)CrossRef
37.
go back to reference Ishii, K., Sato, M., Ochiai, S.: Prediction of leachate quantity and quality from a landfill site by the long short-term memory model. J. Environ. Manage. 310, 114733 (2022)CrossRef Ishii, K., Sato, M., Ochiai, S.: Prediction of leachate quantity and quality from a landfill site by the long short-term memory model. J. Environ. Manage. 310, 114733 (2022)CrossRef
38.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: CPVR (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: CPVR (2014)
39.
go back to reference He, K.M., Zhang, X.Y., Ren, S.Q.: Deep residual learning for image recognition. In: CPVR (2016) He, K.M., Zhang, X.Y., Ren, S.Q.: Deep residual learning for image recognition. In: CPVR (2016)
Metadata
Title
Automatic Classification of Remote Sensing Images of Landfill Sites Based on Deep Learning
Authors
Jiayuan Wang
Qiaoqiao Yong
Huanyu Wu
Run Chen
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-3626-7_29