Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Automatic Design of Microfluidic Devices: An Overview of Platforms and Corresponding Design Tasks

Authors : Robert Wille, Bing Li, Rolf Drechsler, Ulf Schlichtmann

Published in: Languages, Design Methods, and Tools for Electronic System Design

Publisher: Springer International Publishing

share
SHARE

Abstract

This overview chapter summarizes the content of a tutorial given at the 2018 edition of the Forum on Specification and Design Languages. The aim of the tutorial was to introduce the technology of microfluidic devices, which gained significant interest in the recent past, as well as corresponding design challenges to a community focused on design automation and corresponding specification/design languages. By this, the overview presents a starting point for researchers and engineers interested in getting involved in this area.
Footnotes
1
Note that a bypass channel [8] connects the endpoints of the two successor channels. This bypass cannot be entered by any droplet and is used to make the droplet routing only dependent on the resistances of the successors (and not the entire network).
 
Literature
1.
go back to reference Alistar, M., Pop, P., & Madsen, J. (2013). Operation placement for application-specific digital microfluidic biochips. In 2013 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) (pp. 1–6). Piscataway: IEEE. Alistar, M., Pop, P., & Madsen, J. (2013). Operation placement for application-specific digital microfluidic biochips. In 2013 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) (pp. 1–6). Piscataway: IEEE.
2.
go back to reference Amin, N., Thies, W., & Amarasinghe, S. P. (2009). Computer-aided design for microfluidic chips based on multilayer soft lithography. In Proceedings of the International Conference on Computer Design (pp. 2–9) Amin, N., Thies, W., & Amarasinghe, S. P. (2009). Computer-aided design for microfluidic chips based on multilayer soft lithography. In Proceedings of the International Conference on Computer Design (pp. 2–9)
3.
go back to reference Bhattacharjee, S., Wille, R., Huang, J. D., & Bhattacharya, B. B. (2018). Storage-aware sample preparation using flow-based microfluidic labs-on-chip. In Design, Automation and Test in Europe (pp. 1399–1404). Bhattacharjee, S., Wille, R., Huang, J. D., & Bhattacharya, B. B. (2018). Storage-aware sample preparation using flow-based microfluidic labs-on-chip. In Design, Automation and Test in Europe (pp. 1399–1404).
4.
go back to reference Biral, A., & Zanella, A. (2013). Introducing purely hydrodynamic networking functionalities into microfluidic systems. Journal of Nano Communication Networks, 4(4), 205–215. CrossRef Biral, A., & Zanella, A. (2013). Introducing purely hydrodynamic networking functionalities into microfluidic systems. Journal of Nano Communication Networks, 4(4), 205–215. CrossRef
5.
go back to reference Biral, A., Zordan, D., & Zanella, A. (2015). Modeling, simulation and experimentation of droplet-based microfluidic networks. IEEE Transactions on Molecular, Biological, and Multi-scale Communications, 1(2), 122–134. CrossRef Biral, A., Zordan, D., & Zanella, A. (2015). Modeling, simulation and experimentation of droplet-based microfluidic networks. IEEE Transactions on Molecular, Biological, and Multi-scale Communications, 1(2), 122–134. CrossRef
6.
go back to reference Castorina, G., Reno, M., Galluccio, L., & Lombardo, A. (2017). Microfluidic networking: Switching multidroplet frames to improve signaling overhead. Journal of Nano Communication Networks, 14, 48–59. CrossRef Castorina, G., Reno, M., Galluccio, L., & Lombardo, A. (2017). Microfluidic networking: Switching multidroplet frames to improve signaling overhead. Journal of Nano Communication Networks, 14, 48–59. CrossRef
7.
go back to reference Chen, Y. H., Hsu, C. L., Tsai, L. C., Huang, T. W., & Ho, T. Y. (2013). A reliability-oriented placement algorithm for reconfigurable digital microfluidic biochips using 3-D deferred decision making technique. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(8), 1151–1162. CrossRef Chen, Y. H., Hsu, C. L., Tsai, L. C., Huang, T. W., & Ho, T. Y. (2013). A reliability-oriented placement algorithm for reconfigurable digital microfluidic biochips using 3-D deferred decision making technique. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(8), 1151–1162. CrossRef
8.
go back to reference Cristobal, G., Benoit, J. P., Joanicot, M., & Ajdari, A. (2006). Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Applied Physics Letters, 89(3), 34104–34104. CrossRef Cristobal, G., Benoit, J. P., Joanicot, M., & Ajdari, A. (2006). Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Applied Physics Letters, 89(3), 34104–34104. CrossRef
9.
go back to reference De Leo, E., Donvito, L., Galluccio, L., Lombardo, A., Morabito, G., & Zanoli, L. M. (2013). Communications and switching in microfluidic systems: Pure hydrodynamic control for networking Labs-on-a-Chip. IEEE Transactions on Communications, 61(11), 4663–4677. CrossRef De Leo, E., Donvito, L., Galluccio, L., Lombardo, A., Morabito, G., & Zanoli, L. M. (2013). Communications and switching in microfluidic systems: Pure hydrodynamic control for networking Labs-on-a-Chip. IEEE Transactions on Communications, 61(11), 4663–4677. CrossRef
10.
go back to reference De Leo, E., Galluccio, L., Lombardo, A., & Morabito, G. (2012). Networked labs-on-a-chip (NLoC): Introducing networking technologies in microfluidic systems. Journal of Nano Communication Networks, 3(4), 217–228. CrossRef De Leo, E., Galluccio, L., Lombardo, A., & Morabito, G. (2012). Networked labs-on-a-chip (NLoC): Introducing networking technologies in microfluidic systems. Journal of Nano Communication Networks, 3(4), 217–228. CrossRef
11.
go back to reference Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2013). Microfluidic networks: Design and simulation of pure hydrodynamic switching and medium access control. Journal of Nano Communication Networks, 4(4), 164–171. CrossRef Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2013). Microfluidic networks: Design and simulation of pure hydrodynamic switching and medium access control. Journal of Nano Communication Networks, 4(4), 164–171. CrossRef
12.
go back to reference Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2014). On the assessment of microfluidic switching capabilities in NLoC networks. In International Conference on Nanoscale Computing and Communication (p. 19). Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2014). On the assessment of microfluidic switching capabilities in NLoC networks. In International Conference on Nanoscale Computing and Communication (p. 19).
13.
go back to reference Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2015). μ-NET: A network for molecular biology applications in microfluidic chips. IEEE/ACM Transactions on Networking, 24(4), 2525–2538. CrossRef Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2015). μ-NET: A network for molecular biology applications in microfluidic chips. IEEE/ACM Transactions on Networking, 24(4), 2525–2538. CrossRef
14.
go back to reference Fidalgo, L. M., & Maerkl, S. J. (2011). A software-programmable microfluidic device for automated biology. Lab on a Chip, 11, 1612–1619. CrossRef Fidalgo, L. M., & Maerkl, S. J. (2011). A software-programmable microfluidic device for automated biology. Lab on a Chip, 11, 1612–1619. CrossRef
15.
go back to reference Fuerstman, M. J., Lai, A., Thurlow, M. E., Shevkoplyas, S. S., Stone, H. A., & Whitesides, G. M. (2007). The pressure drop along rectangular microchannels containing bubbles. Journal on Lab on a Chip, 7(11), 1479–1489. CrossRef Fuerstman, M. J., Lai, A., Thurlow, M. E., Shevkoplyas, S. S., Stone, H. A., & Whitesides, G. M. (2007). The pressure drop along rectangular microchannels containing bubbles. Journal on Lab on a Chip, 7(11), 1479–1489. CrossRef
16.
go back to reference Glawdel, T., Elbuken, C., & Ren, C. (2011). Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Journal on Lab on a Chip, 11(22), 3774–3784. CrossRef Glawdel, T., Elbuken, C., & Ren, C. (2011). Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Journal on Lab on a Chip, 11(22), 3774–3784. CrossRef
17.
go back to reference Glawdel, T., & Ren, C. L. (2012). Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Journal of Microfluidics and Nanofluidics, 13(3), 469–480. CrossRef Glawdel, T., & Ren, C. L. (2012). Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Journal of Microfluidics and Nanofluidics, 13(3), 469–480. CrossRef
18.
go back to reference Gleichmann, N., Malsch, D., Horbert, P., & Henkel, T. (2015). Toward microfluidic design automation: A new system simulation toolkit for the in silico evaluation of droplet-based lab-on-a-chip systems. Journal of Microfluidics and Nanofluidics, 18(5–6), 1095–1105. CrossRef Gleichmann, N., Malsch, D., Horbert, P., & Henkel, T. (2015). Toward microfluidic design automation: A new system simulation toolkit for the in silico evaluation of droplet-based lab-on-a-chip systems. Journal of Microfluidics and Nanofluidics, 18(5–6), 1095–1105. CrossRef
19.
go back to reference Grimmer, A., Chen, X., Hamidovic, M., Haselmayr, W., Ren, C. L., & Wille, R. (2018). Simulation before fabrication: A case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Advances, 8(60), 34733–34742. CrossRef Grimmer, A., Chen, X., Hamidovic, M., Haselmayr, W., Ren, C. L., & Wille, R. (2018). Simulation before fabrication: A case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Advances, 8(60), 34733–34742. CrossRef
20.
go back to reference Grimmer, A., Hamidovic, M., Haselmayr, W., & Wille, R. (2018). Advanced simulation of droplet microfluidics. Journal on Emerging Technologies in Computing Systems, 15(3), Article no. 26. Grimmer, A., Hamidovic, M., Haselmayr, W., & Wille, R. (2018). Advanced simulation of droplet microfluidics. Journal on Emerging Technologies in Computing Systems, 15(3), Article no. 26.
21.
go back to reference Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2017). A discrete model for Networked Labs-on-Chips: Linking the physical world to design automation. In Design Automation Conference (pp. 50:1–50:6). Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2017). A discrete model for Networked Labs-on-Chips: Linking the physical world to design automation. In Design Automation Conference (pp. 50:1–50:6).
22.
go back to reference Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2017). Verification of Networked Labs-on-Chip architectures. In Design, Automation and Test in Europe (pp. 1679–1684). Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2017). Verification of Networked Labs-on-Chip architectures. In Design, Automation and Test in Europe (pp. 1679–1684).
23.
go back to reference Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2018). Design of application-specific architectures for Networked Labs-on-Chips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(1), 193–202. CrossRef Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2018). Design of application-specific architectures for Networked Labs-on-Chips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(1), 193–202. CrossRef
24.
go back to reference Grimmer, A., Haselmayr, W., & Wille, R. (2018). Automated dimensioning of networked labs-on-chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(7), 1216–1225. CrossRef Grimmer, A., Haselmayr, W., & Wille, R. (2018). Automated dimensioning of networked labs-on-chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(7), 1216–1225. CrossRef
25.
go back to reference Grimmer, A., Klepic, B., Ho, T. Y., & Wille, R. (2018). Sound valve-control for programmable microfluidic devices. In Proceedings of the Asia and South Pacific Design and Automation Conference. Grimmer, A., Klepic, B., Ho, T. Y., & Wille, R. (2018). Sound valve-control for programmable microfluidic devices. In Proceedings of the Asia and South Pacific Design and Automation Conference.
26.
go back to reference Grimmer, A., Wang, Q., Yao, H., Ho, T. Y., & Wille, R. (2017). Close-to-optimal placement and routing for continuous-flow microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 530–535). Grimmer, A., Wang, Q., Yao, H., Ho, T. Y., & Wille, R. (2017). Close-to-optimal placement and routing for continuous-flow microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 530–535).
27.
go back to reference Grissom, D., & Brisk, P. (2012). Path scheduling on digital microfluidic biochips. In Proceedings of the 49th Annual Design Automation Conference (pp. 26–35). New York: ACM. Grissom, D., & Brisk, P. (2012). Path scheduling on digital microfluidic biochips. In Proceedings of the 49th Annual Design Automation Conference (pp. 26–35). New York: ACM.
28.
go back to reference Guttenberg, Z., Müller, H., Habermüller, H., Geisbauer, A., Pipper, J., Felbel, J., et al. (2005). Planar chip device for PCR and hybridization with surface acoustic wave pump. Journal on Lab on a Chip, 5(3), 308–317. CrossRef Guttenberg, Z., Müller, H., Habermüller, H., Geisbauer, A., Pipper, J., Felbel, J., et al. (2005). Planar chip device for PCR and hybridization with surface acoustic wave pump. Journal on Lab on a Chip, 5(3), 308–317. CrossRef
29.
go back to reference Haeberle, S., & Zengerle, R. (2007). Microfluidic platforms for Lab-on-a-Chip applications. Journal on Lab on a Chip, 7, 1094–1110. CrossRef Haeberle, S., & Zengerle, R. (2007). Microfluidic platforms for Lab-on-a-Chip applications. Journal on Lab on a Chip, 7, 1094–1110. CrossRef
30.
go back to reference Haselmayr, W., Biral, A., Grimmer, A., Zanella, A., Springer, A., & Wille, R. (2017). Addressing multiple nodes in Networked Labs-on-Chips without payload re-injection. In International Conference on Communications. Haselmayr, W., Biral, A., Grimmer, A., Zanella, A., Springer, A., & Wille, R. (2017). Addressing multiple nodes in Networked Labs-on-Chips without payload re-injection. In International Conference on Communications.
31.
go back to reference Haselmayr, W., Hamidović, M., Grimmer, A., & Wille, R. (2018). Fast and flexible drug screening using a pure hydrodynamic droplet control. In European Conference on Microfluidics. Haselmayr, W., Hamidović, M., Grimmer, A., & Wille, R. (2018). Fast and flexible drug screening using a pure hydrodynamic droplet control. In European Conference on Microfluidics.
32.
go back to reference He, M., Edgar, J. S., Jeffries, G. D., Lorenz, R. M., Shelby, J. P., & Chiu, D. T. (2005). Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets. Journal of Analytical Chemistry, 77(6), 1539–1544. CrossRef He, M., Edgar, J. S., Jeffries, G. D., Lorenz, R. M., Shelby, J. P., & Chiu, D. T. (2005). Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets. Journal of Analytical Chemistry, 77(6), 1539–1544. CrossRef
33.
go back to reference Hu, K., Bhattacharya, B. B., & Chakrabarty, K. (2015). Fault diagnosis for flow-based microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 1–6). Hu, K., Bhattacharya, B. B., & Chakrabarty, K. (2015). Fault diagnosis for flow-based microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 1–6).
34.
go back to reference Hu, K., Dinh, T., Ho, T. Y., & Chakrabarty, K. (2016). Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(1), 55–68. CrossRef Hu, K., Dinh, T., Ho, T. Y., & Chakrabarty, K. (2016). Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(1), 55–68. CrossRef
35.
go back to reference Hu, K., Dinh, T. A., Ho, T. Y., & Chakrabarty, K. (2017). Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(1), 55–68. CrossRef Hu, K., Dinh, T. A., Ho, T. Y., & Chakrabarty, K. (2017). Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(1), 55–68. CrossRef
36.
go back to reference Hu, K., Ho, T. Y., & Chakrabarty, K. (2013). Testing of flow-based microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 1–6). Hu, K., Ho, T. Y., & Chakrabarty, K. (2013). Testing of flow-based microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 1–6).
37.
go back to reference Hu, K., Ho, T. Y., & Chakrabarty, K. (2014). Test generation and design-for-testability for flow-based mVLSI microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 97–102). Hu, K., Ho, T. Y., & Chakrabarty, K. (2014). Test generation and design-for-testability for flow-based mVLSI microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 97–102).
38.
go back to reference Hu, K., Ho, T. Y., & Chakrabarty, K. (2014). Wash optimization for cross-contamination removal in flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 244–249). Hu, K., Ho, T. Y., & Chakrabarty, K. (2014). Wash optimization for cross-contamination removal in flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 244–249).
39.
go back to reference Hu, K., Ho, T. Y., & Chakrabarty, K. (2016). Wash optimization and analysis for cross-contamination removal under physical constraints in flow-based microfluidic biochips. IEEE Transactions on CAD of Integrated Circuits and Systems, 35(4), 559–572. CrossRef Hu, K., Ho, T. Y., & Chakrabarty, K. (2016). Wash optimization and analysis for cross-contamination removal under physical constraints in flow-based microfluidic biochips. IEEE Transactions on CAD of Integrated Circuits and Systems, 35(4), 559–572. CrossRef
40.
go back to reference Hu, K., Yu, F., Ho, T. Y., & Chakrabarty, K. (2014). Testing of flow-based microfluidic biochips: Fault modeling, test generation, and experimental demonstration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(10), 1463–1475. CrossRef Hu, K., Yu, F., Ho, T. Y., & Chakrabarty, K. (2014). Testing of flow-based microfluidic biochips: Fault modeling, test generation, and experimental demonstration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(10), 1463–1475. CrossRef
41.
go back to reference Huang, T. W., & Ho, T. Y. (2009). A fast routability- and performance-driven droplet routing algorithm for digital microfluidic biochips. In International Conference on Computer Design (pp. 445–450). Piscataway: IEEE. Huang, T. W., & Ho, T. Y. (2009). A fast routability- and performance-driven droplet routing algorithm for digital microfluidic biochips. In International Conference on Computer Design (pp. 445–450). Piscataway: IEEE.
42.
go back to reference Hung, L. H., Choi, K. M., Tseng, W. Y., Tan, Y. C., Shea, K. J., & Lee, A. P. (2006). Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Journal on Lab on a Chip, 6(2), 174–178. CrossRef Hung, L. H., Choi, K. M., Tseng, W. Y., Tan, Y. C., Shea, K. J., & Lee, A. P. (2006). Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Journal on Lab on a Chip, 6(2), 174–178. CrossRef
43.
go back to reference Keszocze, O., Ibrahim, M., Wille, R., Chakrabarty, K., & Drechsler, R. (2018). Exact synthesis of biomolecular protocols for multiple sample pathways on digital microfluidic biochips. In Conference on VLSI Design (pp. 121–126). Keszocze, O., Ibrahim, M., Wille, R., Chakrabarty, K., & Drechsler, R. (2018). Exact synthesis of biomolecular protocols for multiple sample pathways on digital microfluidic biochips. In Conference on VLSI Design (pp. 121–126).
44.
go back to reference Keszocze, O., Li, Z., Grimmer, A., Wille, R., Chakrabarty, K., & Drechsler, R. (2017). Exact routing for micro-electrode-dot-array digital microfluidic biochips. In Asia and South Pacific Design Automation Conference. Keszocze, O., Li, Z., Grimmer, A., Wille, R., Chakrabarty, K., & Drechsler, R. (2017). Exact routing for micro-electrode-dot-array digital microfluidic biochips. In Asia and South Pacific Design Automation Conference.
45.
go back to reference Keszocze, O., Wille, R., Chakrabarty, K., & Drechsler, R. (2015). A general and exact routing methodology for digital microfluidic biochips. In International Conference on Computer-Aided Design (pp. 874–881). Keszocze, O., Wille, R., Chakrabarty, K., & Drechsler, R. (2015). A general and exact routing methodology for digital microfluidic biochips. In International Conference on Computer-Aided Design (pp. 874–881).
46.
go back to reference Keszocze, O., Wille, R., & Drechsler, R. (2014). Exact routing for digital microfluidic biochips with temporary blockages. In International Conference on Computer-Aided Design (pp. 405–410). Keszocze, O., Wille, R., & Drechsler, R. (2014). Exact routing for digital microfluidic biochips with temporary blockages. In International Conference on Computer-Aided Design (pp. 405–410).
47.
go back to reference Keszocze, O., Wille, R., Ho, T. Y., & Drechsler, R. (2014). Exact one-pass synthesis of digital microfluidic biochips. In Design Automation Conference (pp. 1–6). Keszocze, O., Wille, R., Ho, T. Y., & Drechsler, R. (2014). Exact one-pass synthesis of digital microfluidic biochips. In Design Automation Conference (pp. 1–6).
48.
go back to reference Köhler, J., Henkel, T., Grodrian, A., Kirner, T., Roth, M., Martin, K., et al. (2004). Digital reaction technology by micro segmented flow-components, concepts and applications. Chemical Engineering Journal, 101(1), 201–216. CrossRef Köhler, J., Henkel, T., Grodrian, A., Kirner, T., Roth, M., Martin, K., et al. (2004). Digital reaction technology by micro segmented flow-components, concepts and applications. Chemical Engineering Journal, 101(1), 201–216. CrossRef
49.
go back to reference Lai, G. R., Lin, C. Y., & Ho, T. Y. (2018). Pump-aware flow routing algorithm for programmable microfluidic devices. In Proceedings of the Design, Automation, and Test Europe Conference. Lai, G. R., Lin, C. Y., & Ho, T. Y. (2018). Pump-aware flow routing algorithm for programmable microfluidic devices. In Proceedings of the Design, Automation, and Test Europe Conference.
50.
go back to reference Lai, K., Yang, Y.-T., Lee, C.-Y. (2015). An intelligent digital microfluidic processor for biomedical detection. Journal of Signal Processing Systems, 78, 85–93. CrossRef Lai, K., Yang, Y.-T., Lee, C.-Y. (2015). An intelligent digital microfluidic processor for biomedical detection. Journal of Signal Processing Systems, 78, 85–93. CrossRef
51.
go back to reference Leo, E. D., Donvito, L., Galluccio, L., Lombardo, A., Morabito, G., & Zanoli, L. M. (2013). Design and assessment of a pure hydrodynamic microfluidic switch. In International Conference on Communications (pp. 3165–3169). Leo, E. D., Donvito, L., Galluccio, L., Lombardo, A., Morabito, G., & Zanoli, L. M. (2013). Design and assessment of a pure hydrodynamic microfluidic switch. In International Conference on Communications (pp. 3165–3169).
52.
go back to reference Li, Z., Lai, K. Y. T., Yu, P. H., Ho, T. Y., Chakrabarty, K., & Lee, C. Y. (2016). High-level synthesis for micro-electrode-dot-array digital microfluidic biochips. In Design Automation Conference (p. 146). Li, Z., Lai, K. Y. T., Yu, P. H., Ho, T. Y., Chakrabarty, K., & Lee, C. Y. (2016). High-level synthesis for micro-electrode-dot-array digital microfluidic biochips. In Design Automation Conference (p. 146).
53.
go back to reference Link, D., Anna, S. L., Weitz, D., & Stone, H. (2004). Geometrically mediated breakup of drops in microfluidic devices. Physical Review Letters, 92(5), 054503. CrossRef Link, D., Anna, S. L., Weitz, D., & Stone, H. (2004). Geometrically mediated breakup of drops in microfluidic devices. Physical Review Letters, 92(5), 054503. CrossRef
54.
go back to reference Liu, C., Li, B., Bhattacharya, B. B., Chakrabarty, K., Ho, T. Y., & Schlichtmann, U. (2017). Testing microfluidic fully programmable valve arrays (FPVAs). In Proceedings of the Design, Automation, and Test Europe Conference (pp. 91–96). Liu, C., Li, B., Bhattacharya, B. B., Chakrabarty, K., Ho, T. Y., & Schlichtmann, U. (2017). Testing microfluidic fully programmable valve arrays (FPVAs). In Proceedings of the Design, Automation, and Test Europe Conference (pp. 91–96).
55.
go back to reference Liu, C., Li, B., Ho, T. Y., Chakrabarty, K., & Schlichtmann, U. (2018). Design-for-testability for continuous-flow microfluidic biochips. In Proceedings of the Design Automation Conference. Liu, C., Li, B., Ho, T. Y., Chakrabarty, K., & Schlichtmann, U. (2018). Design-for-testability for continuous-flow microfluidic biochips. In Proceedings of the Design Automation Conference.
56.
go back to reference Liu, C., Li, B., Yao, H., Pop, P., Ho, T. Y., & Schlichtmann, U. (2017). Transport or store? Synthesizing flow-based microfluidic biochips using distributed channel storage. In Proceedings of the Design Automation Conference (pp. 49:1–49:6). Liu, C., Li, B., Yao, H., Pop, P., Ho, T. Y., & Schlichtmann, U. (2017). Transport or store? Synthesizing flow-based microfluidic biochips using distributed channel storage. In Proceedings of the Design Automation Conference (pp. 49:1–49:6).
57.
go back to reference Manz, A., Graber, N., & Widmer, H. M. (1990). Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1(1–6), 244–248. CrossRef Manz, A., Graber, N., & Widmer, H. M. (1990). Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1(1–6), 244–248. CrossRef
58.
go back to reference Mark, D., Haeberle, S., Roth, G., von Stetten, F., & Zengerle, R. (2010). Microfluidic Lab-on-a-Chip platforms: Requirements, characteristics and applications. Journal of Chemical Society Reviews, 39(3), 1153–1182. CrossRef Mark, D., Haeberle, S., Roth, G., von Stetten, F., & Zengerle, R. (2010). Microfluidic Lab-on-a-Chip platforms: Requirements, characteristics and applications. Journal of Chemical Society Reviews, 39(3), 1153–1182. CrossRef
59.
go back to reference Melin, J., & Quake, S. (2007). Microfluidic large-scale integration: the evolution of design rules for biological automation. Annual Review of Biophysics and Biomolecular Structure, 36, 213–231. CrossRef Melin, J., & Quake, S. (2007). Microfluidic large-scale integration: the evolution of design rules for biological automation. Annual Review of Biophysics and Biomolecular Structure, 36, 213–231. CrossRef
60.
go back to reference Minhass, W. H., Pop, P., Madsen, J., & Blaga, F. S. (2012). Architectural synthesis of flow-based microfluidic large-scale integration biochips. In Proceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (pp. 181–190). Minhass, W. H., Pop, P., Madsen, J., & Blaga, F. S. (2012). Architectural synthesis of flow-based microfluidic large-scale integration biochips. In Proceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (pp. 181–190).
61.
go back to reference Minhass, W. H., Pop, P., Madsen, J., & Ho, T. Y. (2013). Control synthesis for the flow-based microfluidic large-scale integration biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 205–212). Minhass, W. H., Pop, P., Madsen, J., & Ho, T. Y. (2013). Control synthesis for the flow-based microfluidic large-scale integration biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 205–212).
62.
go back to reference Pollack, M. G., Shenderov, A. D., & Fair, R. B. (2002). Electrowetting-based actuation of droplets for integrated microfluidics. Journal on Lab on a Chip, 2(2), 96–101. CrossRef Pollack, M. G., Shenderov, A. D., & Fair, R. B. (2002). Electrowetting-based actuation of droplets for integrated microfluidics. Journal on Lab on a Chip, 2(2), 96–101. CrossRef
63.
go back to reference Su, F., & Chakrabarty, K. (2006). Module placement for fault-tolerant microfluidics-based biochips. ACM TODAES, 11(3), 682–710. CrossRef Su, F., & Chakrabarty, K. (2006). Module placement for fault-tolerant microfluidics-based biochips. ACM TODAES, 11(3), 682–710. CrossRef
65.
go back to reference Su, F., Hwang, W., & Chakrabarty, K. (2006). Droplet routing in the synthesis of digital microfluidic biochips. In Design, Automation and Test in Europe (Vol. 1, pp. 1–6). Piscataway: IEEE. Su, F., Hwang, W., & Chakrabarty, K. (2006). Droplet routing in the synthesis of digital microfluidic biochips. In Design, Automation and Test in Europe (Vol. 1, pp. 1–6). Piscataway: IEEE.
66.
go back to reference Tan, Y. C., Fisher, J. S., Lee, A. I., Cristini, V., & Lee, A. P. (2004). Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Journal on Lab on a Chip, 4(4), 292–298. CrossRef Tan, Y. C., Fisher, J. S., Lee, A. I., Cristini, V., & Lee, A. P. (2004). Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Journal on Lab on a Chip, 4(4), 292–298. CrossRef
67.
go back to reference Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R., & Lee, A. P. (2006). Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. Journal of the American Chemical Society, 128(17), 5656–5658. CrossRef Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R., & Lee, A. P. (2006). Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. Journal of the American Chemical Society, 128(17), 5656–5658. CrossRef
68.
go back to reference Tan, Y. C., Ho, Y. L., & Lee, A. P. (2007). Droplet coalescence by geometrically mediated flow in microfluidic channels. Journal of Microfluidics and Nanofluidics, 3(4), 495–499. CrossRef Tan, Y. C., Ho, Y. L., & Lee, A. P. (2007). Droplet coalescence by geometrically mediated flow in microfluidic channels. Journal of Microfluidics and Nanofluidics, 3(4), 495–499. CrossRef
69.
go back to reference Tan, Y. C., Ho, Y. L., & Lee, A. (2008). Microfluidic sorting of droplets by size. Journal of Microfluidics and Nanofluidics, 4(4), 343–348. CrossRef Tan, Y. C., Ho, Y. L., & Lee, A. (2008). Microfluidic sorting of droplets by size. Journal of Microfluidics and Nanofluidics, 4(4), 343–348. CrossRef
70.
go back to reference Thorsen, T., Maerkl, S. J., & Quake, S. R. (2002). Microfluidic large-scale integration. Science, 298(5593), 580–584. CrossRef Thorsen, T., Maerkl, S. J., & Quake, S. R. (2002). Microfluidic large-scale integration. Science, 298(5593), 580–584. CrossRef
71.
go back to reference Tseng, K. H., You, S. C., Liou, J. Y., & Ho, T. Y. (2013). A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization. In Proceedings of the International symposium on Physical Design (pp. 123–129). Tseng, K. H., You, S. C., Liou, J. Y., & Ho, T. Y. (2013). A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization. In Proceedings of the International symposium on Physical Design (pp. 123–129).
72.
go back to reference Tseng, T. M., Li, B., Ho, T. Y., & Schlichtmann, U. (2015). Reliability-aware synthesis for flow-based microfluidic biochips by dynamic-device mapping. In Proceedings of the Design Automation Conference (pp. 141:1–141:6). Tseng, T. M., Li, B., Ho, T. Y., & Schlichtmann, U. (2015). Reliability-aware synthesis for flow-based microfluidic biochips by dynamic-device mapping. In Proceedings of the Design Automation Conference (pp. 141:1–141:6).
73.
go back to reference Tseng, T. M., Li, B., Li, M., Ho, T. Y., & Schlichtmann, U. (2016). Reliability-aware synthesis with dynamic device mapping and fluid routing for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(12), 1981–1994. CrossRef Tseng, T. M., Li, B., Li, M., Ho, T. Y., & Schlichtmann, U. (2016). Reliability-aware synthesis with dynamic device mapping and fluid routing for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(12), 1981–1994. CrossRef
74.
go back to reference Tseng, T. M., Li, B., Schlichtmann, U., & Ho, T. Y. (2015). Storage and caching: Synthesis of flow-based microfluidic biochips. IEEE Design and Test, 32(6), 69–75. CrossRef Tseng, T. M., Li, B., Schlichtmann, U., & Ho, T. Y. (2015). Storage and caching: Synthesis of flow-based microfluidic biochips. IEEE Design and Test, 32(6), 69–75. CrossRef
75.
go back to reference Tseng, T. M., Li, M., Freitas, D. N., McAuley, T., Li, B., Ho, T. Y., et al. (2018). Columba 2.0: A co-layout synthesis tool for continuous-flow microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(8), 1588–1601. CrossRef Tseng, T. M., Li, M., Freitas, D. N., McAuley, T., Li, B., Ho, T. Y., et al. (2018). Columba 2.0: A co-layout synthesis tool for continuous-flow microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(8), 1588–1601. CrossRef
76.
go back to reference Tseng, T. M., Li, M., Li, B., Ho, T. Y., & Schlichtmann, U. (2016). Columba: Co-layout synthesis for continuous-flow microfluidic biochips. In Proceedings of the Design Automation Conference (pp. 147:1–147:6). Tseng, T. M., Li, M., Li, B., Ho, T. Y., & Schlichtmann, U. (2016). Columba: Co-layout synthesis for continuous-flow microfluidic biochips. In Proceedings of the Design Automation Conference (pp. 147:1–147:6).
77.
go back to reference Verpoorte, E., & Rooij, N. F. D. (2003). Microfluidics meets MEMS. Proceedings of the IEEE, 91(6), 930–953. CrossRef Verpoorte, E., & Rooij, N. F. D. (2003). Microfluidics meets MEMS. Proceedings of the IEEE, 91(6), 930–953. CrossRef
78.
go back to reference Wang, G., Teng, D., & Fan, S. K.: Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnology, 5(4), 152–160 (2011). CrossRef Wang, G., Teng, D., & Fan, S. K.: Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnology, 5(4), 152–160 (2011). CrossRef
79.
go back to reference Wang, G., Teng, D., Lai, Y. T., Lu, Y. W., Ho, Y., & Lee, C. Y. (2013). Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnology, 8, 163–171. CrossRef Wang, G., Teng, D., Lai, Y. T., Lu, Y. W., Ho, Y., & Lee, C. Y. (2013). Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnology, 8, 163–171. CrossRef
80.
go back to reference Wang, Q., Ru, Y., Yao, H., Ho, T. Y., & Cai, Y. (2016). Sequence-pair-based placement and routing for flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 587–592). Wang, Q., Ru, Y., Yao, H., Ho, T. Y., & Cai, Y. (2016). Sequence-pair-based placement and routing for flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 587–592).
81.
go back to reference Wang, Q., Xu, Y., Zuo, S., Yao, H., Ho, T. Y., Li, B., et al. (2017). Pressure-aware control layer optimization for flow-based microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems, 11(6), 1488–1499. CrossRef Wang, Q., Xu, Y., Zuo, S., Yao, H., Ho, T. Y., Li, B., et al. (2017). Pressure-aware control layer optimization for flow-based microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems, 11(6), 1488–1499. CrossRef
82.
go back to reference Wang, Q., Zuo, S., Yao, H., Ho, T. Y., Li, B., Schlichtmann, U., et al. (2017). Hamming-distance-based valve-switching optimization for control-layer multiplexing in flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 524–529). Wang, Q., Zuo, S., Yao, H., Ho, T. Y., Li, B., Schlichtmann, U., et al. (2017). Hamming-distance-based valve-switching optimization for control-layer multiplexing in flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 524–529).
83.
go back to reference Wang, W., Yang, C., & Li, C. M. (2009). On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Journal on Lab on a Chip, 9(11), 1504–1506. CrossRef Wang, W., Yang, C., & Li, C. M. (2009). On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Journal on Lab on a Chip, 9(11), 1504–1506. CrossRef
84.
go back to reference Wille, R., Keszocze, O., Drechsler, R., Boehnisch, T., & Kroker, A. (2015). Scalable one-pass synthesis for digital microfluidic biochips. Journal on Design and Test, 32(6), 41–50. CrossRef Wille, R., Keszocze, O., Drechsler, R., Boehnisch, T., & Kroker, A. (2015). Scalable one-pass synthesis for digital microfluidic biochips. Journal on Design and Test, 32(6), 41–50. CrossRef
85.
go back to reference Xu, T., & Chakrabarty, K. (2007). Integrated droplet routing in the synthesis of microfluidic biochips. In Design Automation Conference (pp. 948–953). Xu, T., & Chakrabarty, K. (2007). Integrated droplet routing in the synthesis of microfluidic biochips. In Design Automation Conference (pp. 948–953).
86.
go back to reference Yao, H., Ho, T. Y., & Cai, Y. (2015). PACOR: Practical control-layer routing flow with length-matching constraint for flow-based microfluidic biochips. In Proceedings of the Design Automation Conference (pp. 142:1–142:6). Yao, H., Ho, T. Y., & Cai, Y. (2015). PACOR: Practical control-layer routing flow with length-matching constraint for flow-based microfluidic biochips. In Proceedings of the Design Automation Conference (pp. 142:1–142:6).
87.
go back to reference Yuh, P. H., Yang, C. L., & Chang, Y. W. (2007). BioRoute: A network-flow based routing algorithm for digital microfluidic biochips. In International Conference on CAD (pp. 752–757). Piscataway: IEEE Press. Yuh, P. H., Yang, C. L., & Chang, Y. W. (2007). BioRoute: A network-flow based routing algorithm for digital microfluidic biochips. In International Conference on CAD (pp. 752–757). Piscataway: IEEE Press.
88.
go back to reference Yuh, P. H., Yang, C. L., & Chang, Y. W. (2007). Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation. ACM JETC, 3(3), 13. CrossRef Yuh, P. H., Yang, C. L., & Chang, Y. W. (2007). Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation. ACM JETC, 3(3), 13. CrossRef
89.
go back to reference Zheng, B., Roach, L. S., & Ismagilov, R. F. (2003). Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Journal of the American Chemical Society, 125(37), 11170–11171. CrossRef Zheng, B., Roach, L. S., & Ismagilov, R. F. (2003). Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Journal of the American Chemical Society, 125(37), 11170–11171. CrossRef
Metadata
Title
Automatic Design of Microfluidic Devices: An Overview of Platforms and Corresponding Design Tasks
Authors
Robert Wille
Bing Li
Rolf Drechsler
Ulf Schlichtmann
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-31585-6_4