Skip to main content
Top

2018 | OriginalPaper | Chapter

22. Automatic Processing of Musical Sounds in the Human Brain

Authors : Elvira Brattico, Chiara Olcese, Mari Tervaniemi

Published in: Springer Handbook of Systematic Musicology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter introduces neurophysiological evidence on the dissociation between unconscious and conscious aspects of musical sound perception. The focus is on research conducted with the event-related potential (ERP) technique, which allows chronometric investigation of information-processing stages during music listening. Findings suggest that automatic processes are confined to the auditory cortex and might even involve the discrimination of deviations from simple musical scale rules. In turn, voluntary, cognitive processes, likely originating from the inferior prefrontal cortex, are necessary to understand more complex musical rules, such as tonality and harmony. The implications of understanding how and to what extent music is processed below the level of consciousness are discussed in rehabilitation and therapeutic settings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
22.1
go back to reference J.R. Anderson: Cognitive Psychology and its Implications (Worth, Duffield 2004) J.R. Anderson: Cognitive Psychology and its Implications (Worth, Duffield 2004)
22.2
go back to reference P. Vuust, E. Brattico, E. Glerean, M. Seppänen, S. Pakarinen, M. Tervaniemi, R. Näätänen: New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability, Cortex 47(9), 1091–1098 (2011)CrossRef P. Vuust, E. Brattico, E. Glerean, M. Seppänen, S. Pakarinen, M. Tervaniemi, R. Näätänen: New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability, Cortex 47(9), 1091–1098 (2011)CrossRef
22.3
go back to reference S.A. Hillyard, R.F. Hink, V.L. Schwent, T.W. Picton: Electrical signs of selective attention in the human brain, Science 182, 180 (1973)CrossRef S.A. Hillyard, R.F. Hink, V.L. Schwent, T.W. Picton: Electrical signs of selective attention in the human brain, Science 182, 180 (1973)CrossRef
22.4
go back to reference U. Neisser: Cognitive Psychology: CT, US (Appletion-Century-Crofts, East Norwalk 1967) U. Neisser: Cognitive Psychology: CT, US (Appletion-Century-Crofts, East Norwalk 1967)
22.5
go back to reference A.M. Treisman, G. Gelade: A feature-integration theory of attention, Cogn. Psychol. 12(1), 97–136 (1980)CrossRef A.M. Treisman, G. Gelade: A feature-integration theory of attention, Cogn. Psychol. 12(1), 97–136 (1980)CrossRef
22.6
go back to reference R. Näätänen: Attention and Brain Function (Lawrence Erlbaum Associates, Hillsdale 1992) R. Näätänen: Attention and Brain Function (Lawrence Erlbaum Associates, Hillsdale 1992)
22.7
go back to reference N. Cowan: Attention and Memory: An Integrated Framework (Oxford Univ. Press, New York 1995) N. Cowan: Attention and Memory: An Integrated Framework (Oxford Univ. Press, New York 1995)
22.8
go back to reference J.T. Coull: Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology, Prog. Neurobiol. 55(4), 343–361 (1998)CrossRef J.T. Coull: Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology, Prog. Neurobiol. 55(4), 343–361 (1998)CrossRef
22.9
go back to reference M. Posner: Neuropsychology: Modulation by instruction, Nature 373(6511), 198–199 (1995)CrossRef M. Posner: Neuropsychology: Modulation by instruction, Nature 373(6511), 198–199 (1995)CrossRef
22.10
go back to reference L. Jäncke, S. Mirzazade, N.J. Shah: Attention modulates activity in the primary and the secondary auditory cortex: A functional magnetic resonance imaging study in human subjects, Neurosci. Lett. 266(2), 125–128 (1999)CrossRef L. Jäncke, S. Mirzazade, N.J. Shah: Attention modulates activity in the primary and the secondary auditory cortex: A functional magnetic resonance imaging study in human subjects, Neurosci. Lett. 266(2), 125–128 (1999)CrossRef
22.11
go back to reference C.I. Petkov, X. Kang, K. Alho, O. Bertrand, E.W. Yund, D.L. Woods: Attentional modulation of human auditory cortex, Nat. Neurosci. 7(6), 658–663 (2004)CrossRef C.I. Petkov, X. Kang, K. Alho, O. Bertrand, E.W. Yund, D.L. Woods: Attentional modulation of human auditory cortex, Nat. Neurosci. 7(6), 658–663 (2004)CrossRef
22.12
go back to reference T.W. Picton, A. Durieux-Smith: Auditory evoked potentials in the assessment of hearing, Neurol. Clin. 6(4), 791–808 (1988) T.W. Picton, A. Durieux-Smith: Auditory evoked potentials in the assessment of hearing, Neurol. Clin. 6(4), 791–808 (1988)
22.13
go back to reference M.D. Rugg, M.G.H. Coles (Eds.): Electrophysiology of Mind: Event-Related Brain Potentials and Cognition (Oxford Univ. Press, Oxford 1995) M.D. Rugg, M.G.H. Coles (Eds.): Electrophysiology of Mind: Event-Related Brain Potentials and Cognition (Oxford Univ. Press, Oxford 1995)
22.14
go back to reference C.L. Krumhansl, P. Toivanen, T. Eerola, P. Toiviainen, T. Järvinen, J. Louhivuori: Cross-cultural music cognition: Cognitive methodology applied to north sami yoiks, Cognition 76(1), 13–58 (2000)CrossRef C.L. Krumhansl, P. Toivanen, T. Eerola, P. Toiviainen, T. Järvinen, J. Louhivuori: Cross-cultural music cognition: Cognitive methodology applied to north sami yoiks, Cognition 76(1), 13–58 (2000)CrossRef
22.15
go back to reference B. Snyder: Music and Memory: An Introduction (MIT Press, Cambridge 2000) B. Snyder: Music and Memory: An Introduction (MIT Press, Cambridge 2000)
22.16
go back to reference D. Schön, M. Besson: Audiovisual interactions in music reading. A reaction times and event-related potentials study, Ann. N.Y. Acad. Sci. 999, 193–198 (2003)CrossRef D. Schön, M. Besson: Audiovisual interactions in music reading. A reaction times and event-related potentials study, Ann. N.Y. Acad. Sci. 999, 193–198 (2003)CrossRef
22.17
go back to reference V.J. Schmithorst: Separate cortical networks involved in music perception: Preliminary functional MRI evidence for modularity of music processing, Neuroimage 25(2), 444–551 (2005)CrossRef V.J. Schmithorst: Separate cortical networks involved in music perception: Preliminary functional MRI evidence for modularity of music processing, Neuroimage 25(2), 444–551 (2005)CrossRef
22.18
go back to reference A.J. Lonsdale, A.C. North: Why do we listen to music? A uses and gratification analysis, Br. J. Psychol. 102(1), 108–134 (2011)CrossRef A.J. Lonsdale, A.C. North: Why do we listen to music? A uses and gratification analysis, Br. J. Psychol. 102(1), 108–134 (2011)CrossRef
22.19
go back to reference R. Näätänen, A.W. Gaillard, S. Mäntysalo: Early selective-attention effect reinterpreted, Acta Psychologica 42, 313–329 (1978)CrossRef R. Näätänen, A.W. Gaillard, S. Mäntysalo: Early selective-attention effect reinterpreted, Acta Psychologica 42, 313–329 (1978)CrossRef
22.20
go back to reference R. Näätänen: Mismatch negativity: Clinical research and possible applications, Int. J. Psychophysiol. 48, 179–188 (2003)CrossRef R. Näätänen: Mismatch negativity: Clinical research and possible applications, Int. J. Psychophysiol. 48, 179–188 (2003)CrossRef
22.21
go back to reference H. Lang, T. Nyrke, M. Ek, O. Aaltonen, I. Raimo, R. Näätänen: Pitch discrimination performance and auditory event–related potentials. In: Psychophysiological Brain Research, ed. by C.H.M. Brunia, A.W.K. Gaillard, A. Kok, G. Mulder, M.N. Verbaten (Tilburg Univ. Press, Tilburg 1990) pp. 294–298 H. Lang, T. Nyrke, M. Ek, O. Aaltonen, I. Raimo, R. Näätänen: Pitch discrimination performance and auditory event–related potentials. In: Psychophysiological Brain Research, ed. by C.H.M. Brunia, A.W.K. Gaillard, A. Kok, G. Mulder, M.N. Verbaten (Tilburg Univ. Press, Tilburg 1990) pp. 294–298
22.22
go back to reference M. Tervaniemi, M. Huotilainen, E. Brattico: Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding, Front. Hum. Neurosci. 8, 496 (2014)CrossRef M. Tervaniemi, M. Huotilainen, E. Brattico: Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding, Front. Hum. Neurosci. 8, 496 (2014)CrossRef
22.23
go back to reference H. Tiitinen, P. May, K. Reinikainen, R. Näätänen: Attentive novelty detection in humans is governed by pre-attentive sensory memory, Nature 372, 90–92 (1994)CrossRef H. Tiitinen, P. May, K. Reinikainen, R. Näätänen: Attentive novelty detection in humans is governed by pre-attentive sensory memory, Nature 372, 90–92 (1994)CrossRef
22.24
go back to reference R. Näätänen, E. Schröger, S. Karakas, M. Tervaniemi, P. Paavilainen: Development of a memory trace for a complex sound in the human brain, NeuroReport 4, 503–506 (1993)CrossRef R. Näätänen, E. Schröger, S. Karakas, M. Tervaniemi, P. Paavilainen: Development of a memory trace for a complex sound in the human brain, NeuroReport 4, 503–506 (1993)CrossRef
22.25
go back to reference E. Schröger: On the detection of auditory deviations: A pre-attentive activation model, Psychophysiology 34(3), 245–257 (1997)CrossRef E. Schröger: On the detection of auditory deviations: A pre-attentive activation model, Psychophysiology 34(3), 245–257 (1997)CrossRef
22.26
go back to reference M. Tervaniemi, J. Saarinen, P. Paavilainen, N. Danilova, R. Näätänen: Temporal integration of auditory information in sensory memory as reflected by the mismatch negativity, Biol. Psychol. 38, 157–167 (1994)CrossRef M. Tervaniemi, J. Saarinen, P. Paavilainen, N. Danilova, R. Näätänen: Temporal integration of auditory information in sensory memory as reflected by the mismatch negativity, Biol. Psychol. 38, 157–167 (1994)CrossRef
22.27
go back to reference H. Yabe, M. Tervaniemi, K. Reinikainen, R. Näätänen: Temporal window of integration revealed by MMN to sound omission, NeuroReport 8, 1971–1974 (1997)CrossRef H. Yabe, M. Tervaniemi, K. Reinikainen, R. Näätänen: Temporal window of integration revealed by MMN to sound omission, NeuroReport 8, 1971–1974 (1997)CrossRef
22.28
go back to reference H. Yabe, M. Tervaniemi, J. Sinkkonen, M. Huotilainen, R.J. Ilmoniemi, R. Näätänen: The temporal window of integration of auditory information in the human brain, Psychophysiology 35, 615–619 (1998)CrossRef H. Yabe, M. Tervaniemi, J. Sinkkonen, M. Huotilainen, R.J. Ilmoniemi, R. Näätänen: The temporal window of integration of auditory information in the human brain, Psychophysiology 35, 615–619 (1998)CrossRef
22.29
go back to reference E. Brattico, M. Tervaniemi, R. Näätänen: Context effects on pitch perception in musicians and nonmusicians: Evidence from event-related potential recordings, Music Perception 19, 1–24 (2001)CrossRef E. Brattico, M. Tervaniemi, R. Näätänen: Context effects on pitch perception in musicians and nonmusicians: Evidence from event-related potential recordings, Music Perception 19, 1–24 (2001)CrossRef
22.30
go back to reference I. Winkler, G. Karmos, R. Näätänen: Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event – related potential, Brain Res. 742, 239–252 (1996)CrossRef I. Winkler, G. Karmos, R. Näätänen: Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event – related potential, Brain Res. 742, 239–252 (1996)CrossRef
22.31
go back to reference K. Friston: A theory of cortical responses, Philos. Trans. R. Soc. B 360, 815–836 (2005)CrossRef K. Friston: A theory of cortical responses, Philos. Trans. R. Soc. B 360, 815–836 (2005)CrossRef
22.32
go back to reference R. Näätänen, S. Pakarinen, T. Rinne, R. Takegata: The mismatch negativity (MMN): Towards the optimal paradigm, Clin. Neurophysiol. 115(1), 140–144 (2004)CrossRef R. Näätänen, S. Pakarinen, T. Rinne, R. Takegata: The mismatch negativity (MMN): Towards the optimal paradigm, Clin. Neurophysiol. 115(1), 140–144 (2004)CrossRef
22.33
go back to reference V. Putkinen, M. Tervaniemi, K. Saarikivi, N. De Vent, M. Huotilainen: Investigating the effects of musical training on functional brain development with a novel melodic MMN paradigm, Neurobiol. Learn. Mem. 110, 8–15 (2014)CrossRef V. Putkinen, M. Tervaniemi, K. Saarikivi, N. De Vent, M. Huotilainen: Investigating the effects of musical training on functional brain development with a novel melodic MMN paradigm, Neurobiol. Learn. Mem. 110, 8–15 (2014)CrossRef
22.34
go back to reference T. Särkämö, M. Tervaniemi, S. Laitinen, A. Numminen, M. Kurki, J.K. Johnson, P. Rantanen: Cognitive, emotional, and social benefits of regular musical activities in early dementia: Randomized controlled study, Gerontologist 54(4), 634–650 (2014)CrossRef T. Särkämö, M. Tervaniemi, S. Laitinen, A. Numminen, M. Kurki, J.K. Johnson, P. Rantanen: Cognitive, emotional, and social benefits of regular musical activities in early dementia: Randomized controlled study, Gerontologist 54(4), 634–650 (2014)CrossRef
22.35
go back to reference E. Partanen, R. Torppa, J. Pykäläinen, T. Kujala, M. Huotilainen: Children’s brain responses to sound changes in pseudo words in a multifeature paradigm, Clin. Neurophysiol. 124(6), 1132–1138 (2013)CrossRef E. Partanen, R. Torppa, J. Pykäläinen, T. Kujala, M. Huotilainen: Children’s brain responses to sound changes in pseudo words in a multifeature paradigm, Clin. Neurophysiol. 124(6), 1132–1138 (2013)CrossRef
22.36
go back to reference R. Torppa, E. Salo, T. Makkonen, H. Loimo, J. Pykäläinen, J. Lipsanen, A. Faulkner, M. Huotilainen: Cortical processing of musical sounds in children with Cochlear Implants, Clin. Neurophysiol. 123(10), 1966–1979 (2012)CrossRef R. Torppa, E. Salo, T. Makkonen, H. Loimo, J. Pykäläinen, J. Lipsanen, A. Faulkner, M. Huotilainen: Cortical processing of musical sounds in children with Cochlear Implants, Clin. Neurophysiol. 123(10), 1966–1979 (2012)CrossRef
22.38
go back to reference M. Sams, R. Hari, J. Rif, J. Knuutila: The human auditory sensory memory trace persists about 10 msec: Neuromagnetic evidence, J. Cogn. Neurosci. 5, 363–370 (1993)CrossRef M. Sams, R. Hari, J. Rif, J. Knuutila: The human auditory sensory memory trace persists about 10 msec: Neuromagnetic evidence, J. Cogn. Neurosci. 5, 363–370 (1993)CrossRef
22.39
go back to reference C. Böttscher–Gandor, P. Ullsperger: Mismatch negativity in event-related potentials to auditory stimuli as a function of varying interstimulus interval, Psychophysiology 29, 546–550 (1992)CrossRef C. Böttscher–Gandor, P. Ullsperger: Mismatch negativity in event-related potentials to auditory stimuli as a function of varying interstimulus interval, Psychophysiology 29, 546–550 (1992)CrossRef
22.40
go back to reference N. Cowan: On short and long auditory stores, Psychol. Bull. 96, 341–370 (1984)CrossRef N. Cowan: On short and long auditory stores, Psychol. Bull. 96, 341–370 (1984)CrossRef
22.41
go back to reference I. Winkler, R. Näätänen: Event-related potentials in auditory backward recognition masking: A new way to study the neurophysiological basis of sensory memory in humans, Neurosci. Lett. 140, 239–242 (1992)CrossRef I. Winkler, R. Näätänen: Event-related potentials in auditory backward recognition masking: A new way to study the neurophysiological basis of sensory memory in humans, Neurosci. Lett. 140, 239–242 (1992)CrossRef
22.42
go back to reference R. Näätänen: Mismatch negativity (MMN) as an index of central auditory system plasticity, Int. J. Audiol. 47(2), S16–S20 (2008)CrossRef R. Näätänen: Mismatch negativity (MMN) as an index of central auditory system plasticity, Int. J. Audiol. 47(2), S16–S20 (2008)CrossRef
22.43
go back to reference E. Schröger, M. Tervaniemi, M. Huotilainen: Bottom–up and top–down flows of information within auditory memory: Electrophysiological evidence. In: Psychophysics Beyond Sensation: Laws and Invariants of Human Cognition, ed. by C. Kaernbach, E. Schröger, H. Müller (Erlbaum, Hillsdale 2004) pp. 389–407 E. Schröger, M. Tervaniemi, M. Huotilainen: Bottom–up and top–down flows of information within auditory memory: Electrophysiological evidence. In: Psychophysics Beyond Sensation: Laws and Invariants of Human Cognition, ed. by C. Kaernbach, E. Schröger, H. Müller (Erlbaum, Hillsdale 2004) pp. 389–407
22.44
go back to reference P. Celsis, K. Boulanouar, B. Doyon, J.P. Ranjeva, I. Berry, J.L. Nespoulous, F. Chollet: Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones, Neuroimage 9, 135–144 (1999)CrossRef P. Celsis, K. Boulanouar, B. Doyon, J.P. Ranjeva, I. Berry, J.L. Nespoulous, F. Chollet: Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones, Neuroimage 9, 135–144 (1999)CrossRef
22.45
go back to reference U. Schall, P. Johnston, J. Todd, P.B. Ward, P.T. Michie: Functional neuroanatomy of auditory mismatch processing: An event-related fMRI study of duration-deviant oddballs, Neuroimage 20, 729–736 (2003)CrossRef U. Schall, P. Johnston, J. Todd, P.B. Ward, P.T. Michie: Functional neuroanatomy of auditory mismatch processing: An event-related fMRI study of duration-deviant oddballs, Neuroimage 20, 729–736 (2003)CrossRef
22.46
go back to reference S. Molholm, A. Martinez, W. Ritter, D.C. Javitt, J.J. Foxe: The neural circuitry of pre-attentive auditory change-detection: An fMRI study of pitch and duration mismatch negativity generators, Cereb. Cortex 15, 545–551 (2005)CrossRef S. Molholm, A. Martinez, W. Ritter, D.C. Javitt, J.J. Foxe: The neural circuitry of pre-attentive auditory change-detection: An fMRI study of pitch and duration mismatch negativity generators, Cereb. Cortex 15, 545–551 (2005)CrossRef
22.47
go back to reference T. Rinne, A. Degerman, K. Alho: Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: An fMRI study, Neuroimage 26, 66–72 (2005)CrossRef T. Rinne, A. Degerman, K. Alho: Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: An fMRI study, Neuroimage 26, 66–72 (2005)CrossRef
22.48
go back to reference A.K. Lee, E. Larson, R.K. Maddox, B.G. Shinn–Cunningham: Using neuroimaging to understand the cortical mechanisms of auditory selective attention, Hearing Res. 307, 111–120 (2014)CrossRef A.K. Lee, E. Larson, R.K. Maddox, B.G. Shinn–Cunningham: Using neuroimaging to understand the cortical mechanisms of auditory selective attention, Hearing Res. 307, 111–120 (2014)CrossRef
22.49
go back to reference C. Lappe, O. Steinsträter, C. Pantev: A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity, PLoS One 8(4), e61296 (2013)CrossRef C. Lappe, O. Steinsträter, C. Pantev: A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity, PLoS One 8(4), e61296 (2013)CrossRef
22.50
go back to reference K. Alho, T. Rinne, T.J. Herron, D.L. Woods: Stimulus-dependent activations and attention-related modulations in the auditory cortex: a metaanalysis of fMRI studies, Hear. Res. 307, 29–41 (2014)CrossRef K. Alho, T. Rinne, T.J. Herron, D.L. Woods: Stimulus-dependent activations and attention-related modulations in the auditory cortex: a metaanalysis of fMRI studies, Hear. Res. 307, 29–41 (2014)CrossRef
22.51
go back to reference T. Särkämö, E. Pihko, S. Laitinen, A. Forsblom, S. Soinila, M. Mikkonen, T. Autti, H.M. Silvennoinen, J. Erkkilä, M. Laine, I. Peretz, M. Hietanen, M. Tervaniemi: Music and speech listening enhance the recovery of early sensory processing after stroke, J. Cogn. Neurosci. 22(12), 2716–2727 (2010)CrossRef T. Särkämö, E. Pihko, S. Laitinen, A. Forsblom, S. Soinila, M. Mikkonen, T. Autti, H.M. Silvennoinen, J. Erkkilä, M. Laine, I. Peretz, M. Hietanen, M. Tervaniemi: Music and speech listening enhance the recovery of early sensory processing after stroke, J. Cogn. Neurosci. 22(12), 2716–2727 (2010)CrossRef
22.52
go back to reference M. Tervaniemi, E. Shröger, M. Saher, R. Näätänen: Effects of spectral complexity and sound duration in complex-sound pitch processing in humans-a mismatch negativity study, Neurosci. Lett. 290, 66–70 (2000)CrossRef M. Tervaniemi, E. Shröger, M. Saher, R. Näätänen: Effects of spectral complexity and sound duration in complex-sound pitch processing in humans-a mismatch negativity study, Neurosci. Lett. 290, 66–70 (2000)CrossRef
22.53
go back to reference A. Dittmann–Balcar, M. Juptner, W. Jentzen, U. Schall: Dorsolateral prefrontal cortex activation during automatic auditory duration mismatch processing in humans: A positron emission tomography study, Neurosci. Lett. 308, 119–122 (2001)CrossRef A. Dittmann–Balcar, M. Juptner, W. Jentzen, U. Schall: Dorsolateral prefrontal cortex activation during automatic auditory duration mismatch processing in humans: A positron emission tomography study, Neurosci. Lett. 308, 119–122 (2001)CrossRef
22.54
go back to reference B.W. Müller, M. Juptner, W. Jentzen, S.P. Müller: Cortical activation to auditory mismatch elicited by frequency deviant and complex novel sounds: A pet study, NeuroImage 17, 231–239 (2002)CrossRef B.W. Müller, M. Juptner, W. Jentzen, S.P. Müller: Cortical activation to auditory mismatch elicited by frequency deviant and complex novel sounds: A pet study, NeuroImage 17, 231–239 (2002)CrossRef
22.55
go back to reference C.F. Doeller, B. Opitz, A. Mecklinger, C. Krick, W. Reith, E. Schröger: Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence, NeuroImage 20, 1270–1282 (2004)CrossRef C.F. Doeller, B. Opitz, A. Mecklinger, C. Krick, W. Reith, E. Schröger: Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence, NeuroImage 20, 1270–1282 (2004)CrossRef
22.56
go back to reference C.Y. Tse, T.B. Penney: On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance, NeuroImage 41, 1462–1470 (2008)CrossRef C.Y. Tse, T.B. Penney: On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance, NeuroImage 41, 1462–1470 (2008)CrossRef
22.57
go back to reference C.Y. Tse, T. Rinne, K.K. Ng, T.B. Penney: The functional role of the frontal cortex in pre–attentive auditory change detection, NeuroImage 19(83C), 870–879 (2013)CrossRef C.Y. Tse, T. Rinne, K.K. Ng, T.B. Penney: The functional role of the frontal cortex in pre–attentive auditory change detection, NeuroImage 19(83C), 870–879 (2013)CrossRef
22.58
go back to reference K. Alho: Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes, Ear Hearing 16, 38–51 (1995)CrossRef K. Alho: Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes, Ear Hearing 16, 38–51 (1995)CrossRef
22.59
go back to reference M.H. Giard, F. Perrin, J. Pernier, P. Bouchet: Brain generators implicated in processing of auditory stimulus deviance: A topographic event-related potential study, Psychophysiology 27, 627–640 (1990)CrossRef M.H. Giard, F. Perrin, J. Pernier, P. Bouchet: Brain generators implicated in processing of auditory stimulus deviance: A topographic event-related potential study, Psychophysiology 27, 627–640 (1990)CrossRef
22.60
go back to reference R. Näätänen, P.T. Michie: Early selective attention effects on the evoked potential: A critical review and reinterpretation, Biol. Psychol. 8, 81–136 (1979)CrossRef R. Näätänen, P.T. Michie: Early selective attention effects on the evoked potential: A critical review and reinterpretation, Biol. Psychol. 8, 81–136 (1979)CrossRef
22.61
go back to reference T. Rinne, R.J. Ilmoniemi, J. Sinkkonen, J. Virtanen, R. Näätänen: Separate time behaviors of the temporal and frontal MMN sources, Neuroimage 12, 14–19 (2000)CrossRef T. Rinne, R.J. Ilmoniemi, J. Sinkkonen, J. Virtanen, R. Näätänen: Separate time behaviors of the temporal and frontal MMN sources, Neuroimage 12, 14–19 (2000)CrossRef
22.62
go back to reference R. Näätänen: The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function, The Behav. Brain Sci. 13, 201–288 (1990)CrossRef R. Näätänen: The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function, The Behav. Brain Sci. 13, 201–288 (1990)CrossRef
22.63
go back to reference K. Alho, C. Escera, R. Diaz, E. Yago, J.M. Serra: Effects of involuntary auditory attention on visual task performance and brain activity, NeuroReport 8, 3233–3237 (1997)CrossRef K. Alho, C. Escera, R. Diaz, E. Yago, J.M. Serra: Effects of involuntary auditory attention on visual task performance and brain activity, NeuroReport 8, 3233–3237 (1997)CrossRef
22.64
go back to reference M.H. Giard, J. Lavikainen, K. Reinikainen, F. Perrin, O. Bertrand, J. Pernier, R. Näätänen: Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis, J. Cogn. Neurosci. 7, 133–143 (1995)CrossRef M.H. Giard, J. Lavikainen, K. Reinikainen, F. Perrin, O. Bertrand, J. Pernier, R. Näätänen: Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis, J. Cogn. Neurosci. 7, 133–143 (1995)CrossRef
22.65
go back to reference S. Levänen, A. Ahonen, R. Hari, L. McEvoy, M. Sams: Deviant auditory stimuli activate human left and right auditory cortex differently, Cereb. Cortex 6, 288–296 (1996)CrossRef S. Levänen, A. Ahonen, R. Hari, L. McEvoy, M. Sams: Deviant auditory stimuli activate human left and right auditory cortex differently, Cereb. Cortex 6, 288–296 (1996)CrossRef
22.66
go back to reference S. Levänen, R. Hari, L. McEvoy, M. Sams: Responses of the human auditory cortex to changes in one versus two stimulus features, Exp. Brain Res. 97, 177–183 (1993)CrossRef S. Levänen, R. Hari, L. McEvoy, M. Sams: Responses of the human auditory cortex to changes in one versus two stimulus features, Exp. Brain Res. 97, 177–183 (1993)CrossRef
22.67
go back to reference K. Alho, M. Tervaniemi, M. Huotilainen, J. Lavikainen, H. Tiitinen, R.J. Ilmoniemi, J. Knuutila, R. Näätänen: Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses, Psychophysiology 33, 369–375 (1996)CrossRef K. Alho, M. Tervaniemi, M. Huotilainen, J. Lavikainen, H. Tiitinen, R.J. Ilmoniemi, J. Knuutila, R. Näätänen: Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses, Psychophysiology 33, 369–375 (1996)CrossRef
22.68
go back to reference M. Tervaniemi, A. Kujala, K. Alho, J. Virtanen, R.J. Ilmoniemi, R. Näätänen: Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study, NeuroImage 9, 330–336 (1999)CrossRef M. Tervaniemi, A. Kujala, K. Alho, J. Virtanen, R.J. Ilmoniemi, R. Näätänen: Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study, NeuroImage 9, 330–336 (1999)CrossRef
22.69
go back to reference M. Tervaniemi, A.J. Szameitat, S. Kruck, E. Schröger, K. Alter, W. De Baene, A.D. Friederici: From air oscillations to music and speech: Functional magnetic resonance imaging evidence for fine-tuned neural networks in audition, J. Neurosci. 26(34), 8647–8652 (2006)CrossRef M. Tervaniemi, A.J. Szameitat, S. Kruck, E. Schröger, K. Alter, W. De Baene, A.D. Friederici: From air oscillations to music and speech: Functional magnetic resonance imaging evidence for fine-tuned neural networks in audition, J. Neurosci. 26(34), 8647–8652 (2006)CrossRef
22.70
go back to reference M. Tervaniemi, S. Maury, R. Näätänen: Neural representations of abstract stimulus features in the human brain as reflected by the mismatch negativity, NeuroReport 5, 844–846 (1994)CrossRef M. Tervaniemi, S. Maury, R. Näätänen: Neural representations of abstract stimulus features in the human brain as reflected by the mismatch negativity, NeuroReport 5, 844–846 (1994)CrossRef
22.71
go back to reference P. Paavilainen, M. Jaramillo, R. Näätänen: Binaural information can converge in abstract memory traces, Psychophysiology 35, 483–487 (1998)CrossRef P. Paavilainen, M. Jaramillo, R. Näätänen: Binaural information can converge in abstract memory traces, Psychophysiology 35, 483–487 (1998)CrossRef
22.72
go back to reference P. Paavilainen, J. Saarinen, M. Tervaniemi, R. Näätänen: Mismatch negativity to changes in abstract sound features during dichotic listening, Int. J. Psychophysiol. 9, 243–249 (1995) P. Paavilainen, J. Saarinen, M. Tervaniemi, R. Näätänen: Mismatch negativity to changes in abstract sound features during dichotic listening, Int. J. Psychophysiol. 9, 243–249 (1995)
22.73
go back to reference J. Saarinen, P. Paavilainen, E. Schröger, M. Tervaniemi, R. Näätänen: Representation of abstract stimulus attributes in human brain, NeuroReport 3, 1149–1151 (1992)CrossRef J. Saarinen, P. Paavilainen, E. Schröger, M. Tervaniemi, R. Näätänen: Representation of abstract stimulus attributes in human brain, NeuroReport 3, 1149–1151 (1992)CrossRef
22.74
go back to reference O.A. Korzyukov, I. Winkler, V.I. Gumenyuk, K. Alho: Processing abstract auditory features in the human auditory cortex, NeuroImage 20(4), 2245–2258 (2003)CrossRef O.A. Korzyukov, I. Winkler, V.I. Gumenyuk, K. Alho: Processing abstract auditory features in the human auditory cortex, NeuroImage 20(4), 2245–2258 (2003)CrossRef
22.75
go back to reference P. Paavilainen, P. Arajärvi, R. Takegata: Preattentive detection of nonsalient contingencies between auditory features, NeuroReport 18, 159–163 (2007)CrossRef P. Paavilainen, P. Arajärvi, R. Takegata: Preattentive detection of nonsalient contingencies between auditory features, NeuroReport 18, 159–163 (2007)CrossRef
22.76
go back to reference P. Paavilainen, A. Degerman, R. Takegata, I. Winkler: Spectral and temporal stimulus characteristics in the processing of abstract auditory features, NeuroReport 14(5), 715–718 (2003)CrossRef P. Paavilainen, A. Degerman, R. Takegata, I. Winkler: Spectral and temporal stimulus characteristics in the processing of abstract auditory features, NeuroReport 14(5), 715–718 (2003)CrossRef
22.77
go back to reference E. Schröger, A. Bendixen, N.J. Trujillo–Barreto, U. Roeber: Processing of abstract rule violations in audition, PLoS ONE 2, e1131 (2007)CrossRef E. Schröger, A. Bendixen, N.J. Trujillo–Barreto, U. Roeber: Processing of abstract rule violations in audition, PLoS ONE 2, e1131 (2007)CrossRef
22.78
go back to reference P. Paavilainen, J. Simola, M. Jaramillo, R. Näätänen, I. Winkler: Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN), Psychophysiology 38(2), 359–365 (2001)CrossRef P. Paavilainen, J. Simola, M. Jaramillo, R. Näätänen, I. Winkler: Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN), Psychophysiology 38(2), 359–365 (2001)CrossRef
22.79
go back to reference D.J. Levitin, A.K. Tirovolas: Current advances in the cognitive neuroscience of music, Ann. N.Y. Acad. Sci. 1156, 211–231 (2009)CrossRef D.J. Levitin, A.K. Tirovolas: Current advances in the cognitive neuroscience of music, Ann. N.Y. Acad. Sci. 1156, 211–231 (2009)CrossRef
22.80
go back to reference E. Narmour: The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model (Univ. of Chicago Press, Chicago 1990) E. Narmour: The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model (Univ. of Chicago Press, Chicago 1990)
22.81
go back to reference E. Brattico, M. Tervaniemi, R. Näätänen, I. Peretz: Musical scale properties are automatically processed in the human auditory cortex, Brain Res. 1117(1), 162–174 (2006)CrossRef E. Brattico, M. Tervaniemi, R. Näätänen, I. Peretz: Musical scale properties are automatically processed in the human auditory cortex, Brain Res. 1117(1), 162–174 (2006)CrossRef
22.82
go back to reference R. Näätänen, M. Tervaniemi, E. Sussman, P. Paavilainen, I. Winkler: Primitive intelligence in the auditory cortex, Trends Neurosci. 24(5), 283–288 (2001)CrossRef R. Näätänen, M. Tervaniemi, E. Sussman, P. Paavilainen, I. Winkler: Primitive intelligence in the auditory cortex, Trends Neurosci. 24(5), 283–288 (2001)CrossRef
22.83
go back to reference E. Brattico, R. Näätänen, T. Verma, V. Välimäki, M. Tervaniemi: Processing of musical intervals in the central auditory system: An eventrelated potential (ERP) study on sensory consonance. In: Proc. Sixth Int. Conf. Music Percept. Cognit., Keele, ed. by C. Woods, G. Luck, R. Brochard, F. Seddon, J.A. Sloboda (Keele University, Department of Psychology, Keele 2000) pp. 1110–1119, CD-ROM E. Brattico, R. Näätänen, T. Verma, V. Välimäki, M. Tervaniemi: Processing of musical intervals in the central auditory system: An eventrelated potential (ERP) study on sensory consonance. In: Proc. Sixth Int. Conf. Music Percept. Cognit., Keele, ed. by C. Woods, G. Luck, R. Brochard, F. Seddon, J.A. Sloboda (Keele University, Department of Psychology, Keele 2000) pp. 1110–1119, CD-ROM
22.84
go back to reference P. Virtala, V. Berg, M. Kivioja, J. Purhonen, M. Salmenkivi, P. Paavilainen, M. Tervaniemi: The preattentive processing of major vs. minor chords in the human brain: An event-related potential study, Neurosci. Lett. 487(3), 406–410 (2011)CrossRef P. Virtala, V. Berg, M. Kivioja, J. Purhonen, M. Salmenkivi, P. Paavilainen, M. Tervaniemi: The preattentive processing of major vs. minor chords in the human brain: An event-related potential study, Neurosci. Lett. 487(3), 406–410 (2011)CrossRef
22.85
go back to reference P. Virtala, V. Putkinen, M. Huotilainen, T. Makkonen, M. Tervaniemi: Musical training facilitates the neural discrimination of major vs. minor chords in 13-year-old children, Psychophysiology 49, 1125–1132 (2012) P. Virtala, V. Putkinen, M. Huotilainen, T. Makkonen, M. Tervaniemi: Musical training facilitates the neural discrimination of major vs. minor chords in 13-year-old children, Psychophysiology 49, 1125–1132 (2012)
22.86
go back to reference P. Virtala, M. Huotilainen, E. Partanen, V. Fellman, M. Tervaniemi: Newborn infants’ auditory system is sensitive to Western music chord categories, Front. Psychol. 4, 492 (2013)CrossRef P. Virtala, M. Huotilainen, E. Partanen, V. Fellman, M. Tervaniemi: Newborn infants’ auditory system is sensitive to Western music chord categories, Front. Psychol. 4, 492 (2013)CrossRef
22.87
go back to reference P. Virtala, M. Huotilainen, E. Partanen, M. Tervaniemi: Musicianship facilitates the processing of Western music chords – An ERP and behavioural study, Neuropsychologia 61, 247–258 (2014)CrossRef P. Virtala, M. Huotilainen, E. Partanen, M. Tervaniemi: Musicianship facilitates the processing of Western music chords – An ERP and behavioural study, Neuropsychologia 61, 247–258 (2014)CrossRef
22.89
go back to reference S. Koelsch, E. Schröger, T.C. Gunter: Music matters: Preattentive musicality of the human brain, Psychophysiology 39(1), 38–48 (2002)CrossRef S. Koelsch, E. Schröger, T.C. Gunter: Music matters: Preattentive musicality of the human brain, Psychophysiology 39(1), 38–48 (2002)CrossRef
22.90
go back to reference P. Loui, T. Grent-’T-Jong, D. Torpey, M. Woldorff: Effects of attention on the neural processing of harmonic syntax in Western music, Cogn. Brain Res. 25(3), 678–687 (2005)CrossRef P. Loui, T. Grent-’T-Jong, D. Torpey, M. Woldorff: Effects of attention on the neural processing of harmonic syntax in Western music, Cogn. Brain Res. 25(3), 678–687 (2005)CrossRef
22.91
go back to reference S. Koelsch, B.H. Schmidt, J. Kansok: Effects of musical expertise on the early right anterior negativity: An event-related brain potential study, Psychophysiology 39(5), 657–663 (2002)CrossRef S. Koelsch, B.H. Schmidt, J. Kansok: Effects of musical expertise on the early right anterior negativity: An event-related brain potential study, Psychophysiology 39(5), 657–663 (2002)CrossRef
22.92
go back to reference E. Brattico, T. Tupala, E. Glerean, M. Tervaniemi: Modulated neural processing of Western harmony in folk musicians, Psychophysiology 50(7), 653–663 (2013)CrossRef E. Brattico, T. Tupala, E. Glerean, M. Tervaniemi: Modulated neural processing of Western harmony in folk musicians, Psychophysiology 50(7), 653–663 (2013)CrossRef
22.93
go back to reference E.R. Kandel: The molecular biology of memory storage: A dialogue between genes and synapses, Science 294(5544), 1030–1038 (2001)CrossRef E.R. Kandel: The molecular biology of memory storage: A dialogue between genes and synapses, Science 294(5544), 1030–1038 (2001)CrossRef
22.94
go back to reference M. Beauchemin, L. De Beaumont, P. Vannasing, A. Turcotte, C. Arcand, P. Belin, M. Lassonde: Electrophysiological markers of voice familiarity, Eur. J. Neurosci. 23, 3081–3086 (2006)CrossRef M. Beauchemin, L. De Beaumont, P. Vannasing, A. Turcotte, C. Arcand, P. Belin, M. Lassonde: Electrophysiological markers of voice familiarity, Eur. J. Neurosci. 23, 3081–3086 (2006)CrossRef
22.95
go back to reference O. Hauk, Y. Shtyrov, F. Pulvermuller: The sound of actions as reflected by mismatch negativity: Rapid activation of cortical sensory-motor networks by sounds associated with finger and tongue movements, Eur. J. Neurosci. 23, 811–821 (2006)CrossRef O. Hauk, Y. Shtyrov, F. Pulvermuller: The sound of actions as reflected by mismatch negativity: Rapid activation of cortical sensory-motor networks by sounds associated with finger and tongue movements, Eur. J. Neurosci. 23, 811–821 (2006)CrossRef
22.96
go back to reference S. Koelsch, E. Schröger, M. Tervaniemi: Superior attentive and pre-attentive auditory processing in musicians, NeuroReport 10, 1309–1313 (1999)CrossRef S. Koelsch, E. Schröger, M. Tervaniemi: Superior attentive and pre-attentive auditory processing in musicians, NeuroReport 10, 1309–1313 (1999)CrossRef
22.97
go back to reference M. Seppänen, E. Brattico, M. Tervaniemi: Practice strategies of musicians modulate neural processing and the learning of sound–patterns, Neurobiol. Learn. Mem. 87(2), 236–247 (2007)CrossRef M. Seppänen, E. Brattico, M. Tervaniemi: Practice strategies of musicians modulate neural processing and the learning of sound–patterns, Neurobiol. Learn. Mem. 87(2), 236–247 (2007)CrossRef
22.98
go back to reference T. Fujioka, L.J. Trainor, B. Ross, R. Kakigi, C. Pantev: Musical training enhances automatic encoding of melodic contour and interval structure, J. Cogn. Neurosci. 16(6), 1010–1021 (2004)CrossRef T. Fujioka, L.J. Trainor, B. Ross, R. Kakigi, C. Pantev: Musical training enhances automatic encoding of melodic contour and interval structure, J. Cogn. Neurosci. 16(6), 1010–1021 (2004)CrossRef
22.99
go back to reference P. Vuust, E. Brattico, M. Seppänen, R. Näätänen, M. Tervaniemi: The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm, Neuropsychologia 50(7), 1432–1443 (2012)CrossRef P. Vuust, E. Brattico, M. Seppänen, R. Näätänen, M. Tervaniemi: The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm, Neuropsychologia 50(7), 1432–1443 (2012)CrossRef
22.100
go back to reference M. Tervaniemi, T. Ilvonen, K. Karma, K. Alho, R. Näätänen: The musical brain: Brain waves reveal the neurophysiological basis of musicality in human subjects, Neurosci. Lett. 226, 1–4 (1997)CrossRef M. Tervaniemi, T. Ilvonen, K. Karma, K. Alho, R. Näätänen: The musical brain: Brain waves reveal the neurophysiological basis of musicality in human subjects, Neurosci. Lett. 226, 1–4 (1997)CrossRef
22.101
go back to reference V. Putkinen, M. Tervaniemi, K. Saarikivi, P. Ojala, M. Huotilainen: Enhanced auditory change detection in musically trained school-aged children: A longitudinal event-related potential study, Development. Sci. 17, 282–297 (2014)CrossRef V. Putkinen, M. Tervaniemi, K. Saarikivi, P. Ojala, M. Huotilainen: Enhanced auditory change detection in musically trained school-aged children: A longitudinal event-related potential study, Development. Sci. 17, 282–297 (2014)CrossRef
22.102
go back to reference E. Brattico, K.J. Pallesen, O. Varyagina, C. Bailey, I. Anourova, M. Järvenpää, T. Eerola, M. Tervaniemi: Neural discrimination of nonprototypical chords in music experts and laymen: An MEG study, J. Cogn. Neurosci. 21(11), 2230–2244 (2009)CrossRef E. Brattico, K.J. Pallesen, O. Varyagina, C. Bailey, I. Anourova, M. Järvenpää, T. Eerola, M. Tervaniemi: Neural discrimination of nonprototypical chords in music experts and laymen: An MEG study, J. Cogn. Neurosci. 21(11), 2230–2244 (2009)CrossRef
22.103
go back to reference G. Musacchia, D. Strait, N. Kraus: Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians, Hearing Res. 241(1-2), 34–42 (2008)CrossRef G. Musacchia, D. Strait, N. Kraus: Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians, Hearing Res. 241(1-2), 34–42 (2008)CrossRef
22.104
go back to reference P.C. Wong, E. Skoe, N.M. Russo, T. Dees, N. Kraus: Musical experience shapes human brainstem encoding of linguistic pitch patterns, Nature Neurosci. 10(4), 420–422 (2007)CrossRef P.C. Wong, E. Skoe, N.M. Russo, T. Dees, N. Kraus: Musical experience shapes human brainstem encoding of linguistic pitch patterns, Nature Neurosci. 10(4), 420–422 (2007)CrossRef
22.105
go back to reference G.M. Bidelman, M.W. Weiss, S. Moreno, C. Alain: Coordinated plasticity in brainstem and auditory cortex contributes to enhanced categorical speech perception in musicians, Eur. J. Neurosci. 40(4), 2662–2673 (2014)CrossRef G.M. Bidelman, M.W. Weiss, S. Moreno, C. Alain: Coordinated plasticity in brainstem and auditory cortex contributes to enhanced categorical speech perception in musicians, Eur. J. Neurosci. 40(4), 2662–2673 (2014)CrossRef
22.106
go back to reference J. Kühnis, S. Elmer, M. Meyer, L. Jäncke: The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study, Neuropsychologia 51(8), 1608–1618 (2013)CrossRef J. Kühnis, S. Elmer, M. Meyer, L. Jäncke: The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study, Neuropsychologia 51(8), 1608–1618 (2013)CrossRef
22.107
go back to reference R. Milovanov, M. Huotilainen, V. Välimäki, P.A. Esquef, M. Tervaniemi: Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence, Brain Res. 1194, 81–89 (2008)CrossRef R. Milovanov, M. Huotilainen, V. Välimäki, P.A. Esquef, M. Tervaniemi: Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence, Brain Res. 1194, 81–89 (2008)CrossRef
22.108
go back to reference J. Ayotte, I. Peretz, K. Hyde: Congenital amusia: A group study of adults afflicted with a music-specific disorder, Brain 125(2), 238–251 (2002)CrossRef J. Ayotte, I. Peretz, K. Hyde: Congenital amusia: A group study of adults afflicted with a music-specific disorder, Brain 125(2), 238–251 (2002)CrossRef
22.109
go back to reference P. Albouy, J. Mattout, R. Bouet, E. Maby, G. Sanchez, P.E. Aguera, S. Daligault, C. Delpuech, O. Bertrand, A. Caclin, B. Tillmann: Impaired pitch perception and memory in congenital amusia: The deficit starts in the auditory cortex, Brain 136(5), 1639–1661 (2013)CrossRef P. Albouy, J. Mattout, R. Bouet, E. Maby, G. Sanchez, P.E. Aguera, S. Daligault, C. Delpuech, O. Bertrand, A. Caclin, B. Tillmann: Impaired pitch perception and memory in congenital amusia: The deficit starts in the auditory cortex, Brain 136(5), 1639–1661 (2013)CrossRef
22.110
go back to reference I. Peretz, E. Brattico, M. Tervaniemi: Abnormal electrical brain responses to pitch in congenital amusia, Ann. Neurol. 58(3), 478–482 (2005)CrossRef I. Peretz, E. Brattico, M. Tervaniemi: Abnormal electrical brain responses to pitch in congenital amusia, Ann. Neurol. 58(3), 478–482 (2005)CrossRef
22.111
go back to reference P. Moreau, P. Jolicœur, I. Peretz: Pitch discrimination without awareness in congenital amusia: Evidence from event-related potentials, Brain Cogn. 81(3), 337–344 (2013)CrossRef P. Moreau, P. Jolicœur, I. Peretz: Pitch discrimination without awareness in congenital amusia: Evidence from event-related potentials, Brain Cogn. 81(3), 337–344 (2013)CrossRef
22.112
go back to reference B. Tillmann, K. Schulze, J.M. Foxton: Congenital amusia: A short-term memory deficit for non-verbal, but not verbal sounds, Brain Cogn. 71, 259–264 (2009)CrossRef B. Tillmann, K. Schulze, J.M. Foxton: Congenital amusia: A short-term memory deficit for non-verbal, but not verbal sounds, Brain Cogn. 71, 259–264 (2009)CrossRef
22.113
go back to reference I. Peretz, E. Brattico, M. Järvenpää, M. Tervaniemi: The amusic brain: In tune, out of key, and unaware, Brain 132(5), 1277–1286 (2009)CrossRef I. Peretz, E. Brattico, M. Järvenpää, M. Tervaniemi: The amusic brain: In tune, out of key, and unaware, Brain 132(5), 1277–1286 (2009)CrossRef
22.114
go back to reference G. Mignault Goulet, P. Moreau, N. Robitaille, I. Peretz: Congenital amusia persists in the developing brain after daily music listening, PLoS One 7(5), e36860 (2012)CrossRef G. Mignault Goulet, P. Moreau, N. Robitaille, I. Peretz: Congenital amusia persists in the developing brain after daily music listening, PLoS One 7(5), e36860 (2012)CrossRef
22.115
go back to reference S. Koelsch, M. Wittfoth, A. Wolf, J. Muller, A. Hahne: Music perception in cochlear implant users: An event-related potential study, Clin. Neurophysiol. 115, 966–972 (2004)CrossRef S. Koelsch, M. Wittfoth, A. Wolf, J. Muller, A. Hahne: Music perception in cochlear implant users: An event-related potential study, Clin. Neurophysiol. 115, 966–972 (2004)CrossRef
22.116
go back to reference C.J. Limb, J.T. Rubinstein: Current research on music perception in cochlear implant users, Otolaryngol. Clin. N. Am. 45, 129–140 (2012)CrossRef C.J. Limb, J.T. Rubinstein: Current research on music perception in cochlear implant users, Otolaryngol. Clin. N. Am. 45, 129–140 (2012)CrossRef
22.117
go back to reference L. Timm, P. Vuust, E. Brattico, D. Agrawal, S. Debener, A. Büchner, R. Dengler, M. Wittfoth: Residual neural processing of musical sound features in adult cochlear implant users, Front. Hum. Neurosci. 8, 181 (2014)CrossRef L. Timm, P. Vuust, E. Brattico, D. Agrawal, S. Debener, A. Büchner, R. Dengler, M. Wittfoth: Residual neural processing of musical sound features in adult cochlear implant users, Front. Hum. Neurosci. 8, 181 (2014)CrossRef
22.118
go back to reference C.G. Jung: On the importance of the unconscious in psychopathology, Br. Med. J. 2, 964–968 (1914)CrossRef C.G. Jung: On the importance of the unconscious in psychopathology, Br. Med. J. 2, 964–968 (1914)CrossRef
Metadata
Title
Automatic Processing of Musical Sounds in the Human Brain
Authors
Elvira Brattico
Chiara Olcese
Mari Tervaniemi
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55004-5_22

Premium Partners