Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

09-06-2020 | Regular Paper | Issue 6/2020

The VLDB Journal 6/2020

Automatic weighted matching rectifying rule discovery for data repairing

Can we discover effective repairing rules automatically from dirty data?

Journal:
The VLDB Journal > Issue 6/2020
Authors:
Hiba Abu Ahmad, Hongzhi Wang
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Data repairing is a key problem in data cleaning which aims to uncover and rectify data errors. Traditional methods depend on data dependencies to check the existence of errors in data, but they fail to rectify the errors. To overcome this limitation, recent methods define repairing rules on which they depend to detect and fix errors. However, all existing data repairing rules are provided by experts which is an expensive task in time and effort. Besides, rule-based data repairing methods need an external verified data source or user verifications; otherwise, they are incomplete where they can repair only a small number of errors. In this paper, we define weighted matching rectifying rules (WMRRs) based on similarity matching to capture more errors. We propose a novel algorithm to discover WMRRs automatically from dirty data in-hand. We also develop an automatic algorithm for rules inconsistency resolution. Additionally, based on WMRRs, we propose an automatic data repairing algorithm (WMRR-DR) which uncovers a large number of errors and rectifies them dependably. We experimentally verify our method on both real-life and synthetic data. The experimental results prove that our method can discover effective WMRRs from dirty data in-hand and perform dependable and full-automatic repairing based on the discovered WMRRs, with higher accuracy than the existing dependable methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2020

The VLDB Journal 6/2020 Go to the issue

Premium Partner

    Image Credits