Skip to main content
Top

2024 | OriginalPaper | Chapter

Automl-Based Predictive Maintenance Model for Accurate Failure Detection

Authors : Elif Cesur, M. Raşit Cesur, Şeyma Duymaz

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the application of Automated Machine Learning (AutoML) for predictive maintenance, focusing on accurate failure detection in machines. By leveraging the Digital Twin concept, the study aims to predict and prevent machine malfunctions before they occur. The research compares two prominent AutoML methods, TPOT and Lazypredict, using a dataset with five factors impacting machine failure. The results demonstrate the effectiveness of AutoML in selecting the best algorithms and parameters for predictive maintenance, contributing to the development of more efficient maintenance policies. The chapter also highlights the potential of AutoML in enhancing predictive maintenance strategies, making it a valuable resource for professionals seeking to optimize industrial operations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, Y.G., Chen, Y., Zhao, Y.W.: Chemical mechanical planarization of silicon wafers at natural pH for green manufacturing. Int. J. Precis. Eng. Manuf. 16(9), 2049–2054 (2015)CrossRef Wang, Y.G., Chen, Y., Zhao, Y.W.: Chemical mechanical planarization of silicon wafers at natural pH for green manufacturing. Int. J. Precis. Eng. Manuf. 16(9), 2049–2054 (2015)CrossRef
2.
go back to reference Carvalho, T., Soares, F., Vita, R., Francisco, R., Basto, J., Alcalá, S.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019) Carvalho, T., Soares, F., Vita, R., Francisco, R., Basto, J., Alcalá, S.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019)
3.
go back to reference Panda, C., Singh, T.R.: ML-based vehicle downtime reduction: a case of air compressor failure detection. Eng. Appl. Artif. Intell. 122, 106031 (2023)CrossRef Panda, C., Singh, T.R.: ML-based vehicle downtime reduction: a case of air compressor failure detection. Eng. Appl. Artif. Intell. 122, 106031 (2023)CrossRef
4.
go back to reference Dos Santos, T., Ferreira, F.J.T.E., Pires, J.M., Damasio, C.: Stator winding short-circuit fault diagnosis in induction motors using random forest. In: 2017 IEEE International Electric Machines and Drives Conference, IEEE, Miami, FL, USA (2017) Dos Santos, T., Ferreira, F.J.T.E., Pires, J.M., Damasio, C.: Stator winding short-circuit fault diagnosis in induction motors using random forest. In: 2017 IEEE International Electric Machines and Drives Conference, IEEE, Miami, FL, USA (2017)
5.
go back to reference Uhlmann, E., Pontes, R.P., Geisert, C., Hohwieler, E.: Cluster identification of sensor data for predictive maintenance in a selective laser melting machine tool. Procedia Manuf. 24, 60–65 (2018)CrossRef Uhlmann, E., Pontes, R.P., Geisert, C., Hohwieler, E.: Cluster identification of sensor data for predictive maintenance in a selective laser melting machine tool. Procedia Manuf. 24, 60–65 (2018)CrossRef
6.
go back to reference Guo, F., Rasmussen, B.: Performance benchmarking of residential air conditioning systems using smart thermostat data. Appl. Therm. Eng. 225, 120195 (2023)CrossRef Guo, F., Rasmussen, B.: Performance benchmarking of residential air conditioning systems using smart thermostat data. Appl. Therm. Eng. 225, 120195 (2023)CrossRef
7.
go back to reference Dangut, M.D., Jennions, I.K., King, S., Skaf, Z.: A rare failure detection model for aircraft predictive maintenance using a deep hybrid learning approach. Neural Comput. Appl. 35(4), 2991–3009 (2023)CrossRef Dangut, M.D., Jennions, I.K., King, S., Skaf, Z.: A rare failure detection model for aircraft predictive maintenance using a deep hybrid learning approach. Neural Comput. Appl. 35(4), 2991–3009 (2023)CrossRef
8.
go back to reference Shaheen, B., Kocsis, Á., Németh, I.: Data-driven failure prediction and RUL estimation of mechanical components using accumulative artificial neural networks. Eng. Appl. Artif. Intell. 119, 105749 (2023) Shaheen, B., Kocsis, Á., Németh, I.: Data-driven failure prediction and RUL estimation of mechanical components using accumulative artificial neural networks. Eng. Appl. Artif. Intell. 119, 105749 (2023)
9.
go back to reference Einabadi, B., Baboli, A., Ebrahimi, M.: Dynamic predictive maintenance in industry 4.0 based on real time information: case study in automotive industries. IFAC 52(13), 1069–1074 (2019) Einabadi, B., Baboli, A., Ebrahimi, M.: Dynamic predictive maintenance in industry 4.0 based on real time information: case study in automotive industries. IFAC 52(13), 1069–1074 (2019)
10.
go back to reference Dangut, M.D., Skaf, Z., Jennions, I.K.: An integrated machine learning model for aircraft components rare failure prognostics with log-based dataset. ISA Trans. 113, 127–139 (2021)CrossRef Dangut, M.D., Skaf, Z., Jennions, I.K.: An integrated machine learning model for aircraft components rare failure prognostics with log-based dataset. ISA Trans. 113, 127–139 (2021)CrossRef
11.
go back to reference Calabrese, M., et al.: SOPHIA: an event-based IoT and machine learning architecture for predictive maintenance in industry 4.0. Information 11(4), 202 (2020) Calabrese, M., et al.: SOPHIA: an event-based IoT and machine learning architecture for predictive maintenance in industry 4.0. Information 11(4), 202 (2020)
12.
go back to reference Vincent, A.M., Jidesh, P.: An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms. Sci. Rep. 13(1), 4737 (2023) Vincent, A.M., Jidesh, P.: An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms. Sci. Rep. 13(1), 4737 (2023)
13.
go back to reference Škrlj, B., Bevec, M., Lavrač, N.: Multimodal AutoML via representation evolution. Mach. Learn. Knowl. Extr. 5(1), 1–13 (2022)CrossRef Škrlj, B., Bevec, M., Lavrač, N.: Multimodal AutoML via representation evolution. Mach. Learn. Knowl. Extr. 5(1), 1–13 (2022)CrossRef
14.
go back to reference Sahin, E.K., Demir, S.: Greedy-AutoML: a novel greedy-based stacking ensemble learning framework for assessing soil liquefaction potential. Eng. Appl. Artif. Intell. 119, 105732 (2023) Sahin, E.K., Demir, S.: Greedy-AutoML: a novel greedy-based stacking ensemble learning framework for assessing soil liquefaction potential. Eng. Appl. Artif. Intell. 119, 105732 (2023)
15.
go back to reference Raj, R., Mathew, J., Kannath, S.K., Rajan, J.: StrokeViT with AutoML for brain stroke classification. Eng. Appl. Artif. Intell. 119, 105772 (2023) Raj, R., Mathew, J., Kannath, S.K., Rajan, J.: StrokeViT with AutoML for brain stroke classification. Eng. Appl. Artif. Intell. 119, 105772 (2023)
16.
go back to reference Ferreira, L., Pilastri, A., Romano, F., Cortez, P.: Using supervised and one-class automated machine learning for predictive maintenance. Appl. Soft Comput. 131, 109820 (2022) Ferreira, L., Pilastri, A., Romano, F., Cortez, P.: Using supervised and one-class automated machine learning for predictive maintenance. Appl. Soft Comput. 131, 109820 (2022)
17.
go back to reference Cinar, E., Kalay, S., Saricicek, I.: A predictive maintenance system design and implementation for intelligent manufacturing. Machines 10(11), 1006 (2022) Cinar, E., Kalay, S., Saricicek, I.: A predictive maintenance system design and implementation for intelligent manufacturing. Machines 10(11), 1006 (2022)
18.
go back to reference Rivas, J., Boya-Lara, C., Poveda, H.: Partial discharge detection in power lines using automated machine learning. In: Proceedings - 2022 8th International Engineering, Sciences and Technology Conference, pp. 223–230, IESTEC (2022) Rivas, J., Boya-Lara, C., Poveda, H.: Partial discharge detection in power lines using automated machine learning. In: Proceedings - 2022 8th International Engineering, Sciences and Technology Conference, pp. 223–230, IESTEC (2022)
19.
go back to reference Kocbek, S., Gabrys, B.: Automated machine learning techniques in prognostics of railway track defects. In: IEEE International Conference on Data Mining Workshops, pp. 777–784, ICDMW (2019) Kocbek, S., Gabrys, B.: Automated machine learning techniques in prognostics of railway track defects. In: IEEE International Conference on Data Mining Workshops, pp. 777–784, ICDMW (2019)
Metadata
Title
Automl-Based Predictive Maintenance Model for Accurate Failure Detection
Authors
Elif Cesur
M. Raşit Cesur
Şeyma Duymaz
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_59

Premium Partners