Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

28-02-2020 | Review Article | Issue 2/2020

Intelligent Service Robotics 2/2020

Autonomous car decision making and trajectory tracking based on genetic algorithms and fractional potential fields

Journal:
Intelligent Service Robotics > Issue 2/2020
Authors:
Jean-Baptiste Receveur, Stéphane Victor, Pierre Melchior
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This article deals with the issue of trajectory optimization of autonomous terrestrial vehicles on a specific range handled by the human driver. The main contributions of this paper are a genetic algorithm-potential field combined method for optimized trajectory planning, the definition of the multi-criteria optimization problem by including a time variable, dynamical vehicle constraints, obstacle motion for collision avoidance, and improvements on the attractive and repulsive potential field definitions. The main interests of the proposed method are its efficiency even in only arc-connected spaces with holes, trajectory optimality thanks to the genetic algorithm that minimizes multi-criteria optimization, reactivity thanks to the potential field through the consideration for nature and motion of obstacles, its orientation toward situations a human driver would consider, and finally the inclusion of constraints to avoid danger and to take into account vehicle dynamics. The global trajectory, optimized through genetic algorithm, is used as a reference in a fractional potential field, which is a reactive local path planning method. The repulsive potential field is made safer by adding fractional orders to the obstacles, and the attractive potential field is improved by creating a dynamical optimal target seen from a robust control point of view. This target replaces the unique attractive potential field point and avoids its drawbacks such as local minima. Autonomous car simulation results are given for a crossroad and an overtaking scenarios.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2020

Intelligent Service Robotics 2/2020 Go to the issue

Editorial

Editorial