Skip to main content
Top
Published in:

18-06-2024 | Research

Average Localization Error Prediction for 5G Networks: An Investigation of Different Machine Learning Algorithms

Authors: Osman Altay, Müge Erel-Özçevik, Elif Varol Altay, Yusuf Özçevik

Published in: Wireless Personal Communications | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the realm of today’s networking technologies, user localization has been a formidable challenge for recent applications. There are different approaches in pursuit of heightened position detection of an end-user with the help of GPS, Wi-Fi fingerprint and 5G equipment. However, these approaches require both deployment and maintenance costs because of equipment establishment for position tracking. Moreover, they are not capable of minimizing the localization error, especially for indoor scenarios to track the indoor position of an end-user. Hence, there is an urgent need to delve deeper into innovative approaches to drive further advancements in user localization. In response, Machine Learning (ML) approaches have recently been widely adapted to predict the localization of end-users with minimum error. More specifically, average localization error (ALE) of an end-user can be predicted in a cost-effective way by using proper data and ML methods. For this purpose, we have investigated different ML approaches to get an accurate ALE prediction scheme for 5G networks with mobile end-users. Accordingly, an existing dataset is utilized to generate localization data of end-users in which the ALE is directly calculated by Received Signal Strength Indicator. Moreover, three different normalization approaches are applied for the overarching goal of increased data quality. Consequently, six different ML algorithms, including Linear regression, support vector machine with three different kernels, Gaussian process, and ensemble least-squares boosting (LSBoost) are evaluated with respect to a set of evaluation criteria including R, R2, RMSE, and MAE. The evaluation outcomes emphasize that ensemble LSBoost method, in the context of localization prediction, outperforms the other approaches and is sufficient to yield a viable learning strategy for ALE prediction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Elayoubi, S. E., Jemaa, S. B., Altman, Z., & Galindo-Serrano, A. (2019). 5G RAN slicing for verticals: Enablers and challenges. IEEE Communications Magazine, 57(1), 28–34.CrossRef Elayoubi, S. E., Jemaa, S. B., Altman, Z., & Galindo-Serrano, A. (2019). 5G RAN slicing for verticals: Enablers and challenges. IEEE Communications Magazine, 57(1), 28–34.CrossRef
2.
go back to reference Erel-Özçevik, M., & Canberk, B. (2019). Road to 5G reduced-latency: A software defined handover model for eMBB services. IEEE Transactions on Vehicular Technology, 68(8), 8133–8144.CrossRef Erel-Özçevik, M., & Canberk, B. (2019). Road to 5G reduced-latency: A software defined handover model for eMBB services. IEEE Transactions on Vehicular Technology, 68(8), 8133–8144.CrossRef
3.
go back to reference Paek, J., Kim, J., & Govindan, R. (2010). Energy-efficient rate-adaptive GPS-based positioning for smartphones. In Proceedings of the 8th international conference on Mobile systems, applications, and services (pp. 299–314). Paek, J., Kim, J., & Govindan, R. (2010). Energy-efficient rate-adaptive GPS-based positioning for smartphones. In Proceedings of the 8th international conference on Mobile systems, applications, and services (pp. 299–314).
4.
go back to reference Chen, K., Tan, G., Cao, J., Lu, M., & Fan, X. (2019). Modeling and improving the energy performance of GPS receivers for location services. IEEE Sensors Journal, 20(8), 4512–4523.CrossRef Chen, K., Tan, G., Cao, J., Lu, M., & Fan, X. (2019). Modeling and improving the energy performance of GPS receivers for location services. IEEE Sensors Journal, 20(8), 4512–4523.CrossRef
5.
go back to reference Graf, T. (2011). Power-efficient positioning technologies for mobile devices. In Berlin University of Technology, SNET2 Seminar (Vol. 11). Graf, T. (2011). Power-efficient positioning technologies for mobile devices. In Berlin University of Technology, SNET2 Seminar (Vol. 11).
6.
go back to reference Kim, J., Chang, N., & Shin, D. (2021). Mobile GPS application design based on system-level power and battery status estimation. Energies, 14(17), 5333.CrossRef Kim, J., Chang, N., & Shin, D. (2021). Mobile GPS application design based on system-level power and battery status estimation. Energies, 14(17), 5333.CrossRef
7.
go back to reference Bilen, T., Ahmadi, H., Canberk, B., & Duong, T. Q. (2022). Aeronautical networks for in-flight connectivity: A tutorial of the state-of-the-art and survey of research challenges. IEEE Access, 10, 20053–20079.CrossRef Bilen, T., Ahmadi, H., Canberk, B., & Duong, T. Q. (2022). Aeronautical networks for in-flight connectivity: A tutorial of the state-of-the-art and survey of research challenges. IEEE Access, 10, 20053–20079.CrossRef
8.
go back to reference Özçevik, Y., & Canberk, B. (2020). Energy aware endurance framework for mission critical aerial networks. Ad Hoc Networks, 96, 101992.CrossRef Özçevik, Y., & Canberk, B. (2020). Energy aware endurance framework for mission critical aerial networks. Ad Hoc Networks, 96, 101992.CrossRef
9.
go back to reference Cisco annual internet report (2018-2023), Tech. rep., c11-741490, Cisco public (03-2020). Cisco annual internet report (2018-2023), Tech. rep., c11-741490, Cisco public (03-2020).
10.
go back to reference Ericsson mobility report, Tech. rep., eab-21:010887, Ericsson, Stockholm, Sweden (11-2021). Ericsson mobility report, Tech. rep., eab-21:010887, Ericsson, Stockholm, Sweden (11-2021).
11.
go back to reference 5g nr physical layer measurements (3gpp ts 38.215 version 16.2.0 release 16), Tech. rep, etsi ts 138 215 v16.2.0, 3GPP (07-2020). 5g nr physical layer measurements (3gpp ts 38.215 version 16.2.0 release 16), Tech. rep, etsi ts 138 215 v16.2.0, 3GPP (07-2020).
12.
go back to reference Bao, R., He, Z., & Zhang, Z. (2022). Application of lightning spatio-temporal localization method based on deep LSTM and interpolation. Measurement, 189, 110549.CrossRef Bao, R., He, Z., & Zhang, Z. (2022). Application of lightning spatio-temporal localization method based on deep LSTM and interpolation. Measurement, 189, 110549.CrossRef
13.
go back to reference Ahmadi, H., Viani, F., & Bouallegue, R. (2018). An accurate prediction method for moving target localization and tracking in wireless sensor networks. Ad Hoc Networks, 70, 14–22.CrossRef Ahmadi, H., Viani, F., & Bouallegue, R. (2018). An accurate prediction method for moving target localization and tracking in wireless sensor networks. Ad Hoc Networks, 70, 14–22.CrossRef
14.
go back to reference Maduranga, M. W. P., & Abeysekara, R. (2021). Supervised machine learning for RSSI based indoor localization in IoT applications. International Journal of Computer Applications, 183(3), 26–32.CrossRef Maduranga, M. W. P., & Abeysekara, R. (2021). Supervised machine learning for RSSI based indoor localization in IoT applications. International Journal of Computer Applications, 183(3), 26–32.CrossRef
15.
go back to reference Jondhale, S. R., & Deshpande, R. S. (2018). Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sensors Journal, 19(1), 224–233.CrossRef Jondhale, S. R., & Deshpande, R. S. (2018). Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sensors Journal, 19(1), 224–233.CrossRef
16.
go back to reference Xu, H., Wu, M., Li, P., Zhu, F., & Wang, R. (2018). An RFID indoor positioning algorithm based on support vector regression. Sensors, 18(5), 1504.CrossRef Xu, H., Wu, M., Li, P., Zhu, F., & Wang, R. (2018). An RFID indoor positioning algorithm based on support vector regression. Sensors, 18(5), 1504.CrossRef
17.
go back to reference Correa, A., Barceló, M., Morell, A., & Vicario, J. L. (2014). Indoor pedestrian tracking system exploiting multiple receivers on the body. In 2014 International conference on indoor positioning and indoor navigation (IPIN) (pp. 518–525). IEEE. Correa, A., Barceló, M., Morell, A., & Vicario, J. L. (2014). Indoor pedestrian tracking system exploiting multiple receivers on the body. In 2014 International conference on indoor positioning and indoor navigation (IPIN) (pp. 518–525). IEEE.
18.
go back to reference Ma, C., Yang, M., Jin, Y., Wu, K., & Yan, J. (2019). A new indoor localization algorithm using received signal strength indicator measurements and statistical feature of the channel state information. In 2019 International conference on computer, information and telecommunication systems (CITS) (pp. 1–5). IEEE. Ma, C., Yang, M., Jin, Y., Wu, K., & Yan, J. (2019). A new indoor localization algorithm using received signal strength indicator measurements and statistical feature of the channel state information. In 2019 International conference on computer, information and telecommunication systems (CITS) (pp. 1–5). IEEE.
19.
go back to reference Wymeersch, H., Maranò, S., Gifford, W. M., & Win, M. Z. (2012). A machine learning approach to ranging error mitigation for UWB localization. IEEE Transactions on Communications, 60(6), 1719–1728.CrossRef Wymeersch, H., Maranò, S., Gifford, W. M., & Win, M. Z. (2012). A machine learning approach to ranging error mitigation for UWB localization. IEEE Transactions on Communications, 60(6), 1719–1728.CrossRef
20.
go back to reference Kosaka, T., & Wandale Ichige, S. K. (2023). RSSI-based indoor localization using two-step XGBoost. IEICE Communications Express, 12(12), 647–650.CrossRef Kosaka, T., & Wandale Ichige, S. K. (2023). RSSI-based indoor localization using two-step XGBoost. IEICE Communications Express, 12(12), 647–650.CrossRef
21.
go back to reference Abbas, H. A., Boskany, N. W., Ghafoor, K. Z., & Rawat, D. B. (2021). Wi-Fi based accurate indoor localization system using SVM and LSTM algorithms. In 22nd International conference on information reuse and integration for data science (IRI) (pp. 416–422). IEEE. Abbas, H. A., Boskany, N. W., Ghafoor, K. Z., & Rawat, D. B. (2021). Wi-Fi based accurate indoor localization system using SVM and LSTM algorithms. In 22nd International conference on information reuse and integration for data science (IRI) (pp. 416–422). IEEE.
22.
go back to reference Hu, S., He, K., Yang, X., & Peng, S. (2022). Bluetooth fingerprint based indoor localization using Bi-LSTM. In 31st Wireless and optical communications conference (WOCC) (pp. 161–165). Hu, S., He, K., Yang, X., & Peng, S. (2022). Bluetooth fingerprint based indoor localization using Bi-LSTM. In 31st Wireless and optical communications conference (WOCC) (pp. 161–165).
23.
go back to reference Dong, Y., Arslan, T., & Yang, Y. (2022). An encoded LSTM network model for WiFi-based indoor positioning. In 12th International conference on indoor positioning and indoor navigation (IPIN) (pp. 1–6). IEEE. Dong, Y., Arslan, T., & Yang, Y. (2022). An encoded LSTM network model for WiFi-based indoor positioning. In 12th International conference on indoor positioning and indoor navigation (IPIN) (pp. 1–6). IEEE.
24.
go back to reference Yadav, P., & Sharma, S. C. (2023). Unveiling the cutting edge: A comprehensive survey of localization techniques in WSN, leveraging optimization and machine learning approaches. Wireless Personal Communications, 132, 2293–2362.CrossRef Yadav, P., & Sharma, S. C. (2023). Unveiling the cutting edge: A comprehensive survey of localization techniques in WSN, leveraging optimization and machine learning approaches. Wireless Personal Communications, 132, 2293–2362.CrossRef
25.
go back to reference Yadav, P., & Sharma, S. C. (2023). A systematic review of localization in WSN: Machine learning and optimization-based approaches. International Journal of Communication Systems, 36(4), e5397.CrossRef Yadav, P., & Sharma, S. C. (2023). A systematic review of localization in WSN: Machine learning and optimization-based approaches. International Journal of Communication Systems, 36(4), e5397.CrossRef
26.
go back to reference Panja, A. K., Karim, S. F., Neogy, S., & Chowdhury, C. (2022). A novel feature based ensemble learning model for indoor localization of smartphone users. Engineering Applications of Artificial Intelligence, 107, 104538.CrossRef Panja, A. K., Karim, S. F., Neogy, S., & Chowdhury, C. (2022). A novel feature based ensemble learning model for indoor localization of smartphone users. Engineering Applications of Artificial Intelligence, 107, 104538.CrossRef
27.
go back to reference Singh, A., Kotiyal, V., Sharma, S., Nagar, J., & Lee, C. C. (2020). A machine learning approach to predict the average localization error with applications to wireless sensor networks. IEEE Access, 8, 208253–208263.CrossRef Singh, A., Kotiyal, V., Sharma, S., Nagar, J., & Lee, C. C. (2020). A machine learning approach to predict the average localization error with applications to wireless sensor networks. IEEE Access, 8, 208253–208263.CrossRef
28.
go back to reference Hoang, M. T., Yuen, B., Dong, X., Lu, T., Westendorp, R., & Reddy, K. (2019). Recurrent neural networks for accurate RSSI indoor localization. IEEE Internet of Things Journal, 6(6), 10639–10651.CrossRef Hoang, M. T., Yuen, B., Dong, X., Lu, T., Westendorp, R., & Reddy, K. (2019). Recurrent neural networks for accurate RSSI indoor localization. IEEE Internet of Things Journal, 6(6), 10639–10651.CrossRef
29.
go back to reference Altay, O., Gurgenc, T., Ulas, M., & Özel, C. (2020). Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithms. Friction, 8(1), 107–114.CrossRef Altay, O., Gurgenc, T., Ulas, M., & Özel, C. (2020). Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithms. Friction, 8(1), 107–114.CrossRef
30.
go back to reference Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Elsevier. Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Elsevier.
31.
go back to reference Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.CrossRef Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.CrossRef
32.
go back to reference Gurgenc, T., Altay, O., Ulas, M., & Ozel, C. (2020). Extreme learning machine and support vector regression wear loss predictions for magnesium alloys coated using various spray coating methods. Journal of Applied Physics, 127(18), 185103.CrossRef Gurgenc, T., Altay, O., Ulas, M., & Ozel, C. (2020). Extreme learning machine and support vector regression wear loss predictions for magnesium alloys coated using various spray coating methods. Journal of Applied Physics, 127(18), 185103.CrossRef
33.
go back to reference Tang, Y., Guo, W., & Gao, J. (2009). Efficient model selection for support vector machine with Gaussian kernel function. In 2009 IEEE symposium on computational intelligence and data mining (pp. 40–45). IEEE. Tang, Y., Guo, W., & Gao, J. (2009). Efficient model selection for support vector machine with Gaussian kernel function. In 2009 IEEE symposium on computational intelligence and data mining (pp. 40–45). IEEE.
34.
go back to reference Cheng, M., Jiao, L., Yan, P., Feng, L., Qiu, T., Wang, X., & Zhang, B. (2021). Prediction of surface residual stress in end milling with Gaussian process regression. Measurement, 178, 109333.CrossRef Cheng, M., Jiao, L., Yan, P., Feng, L., Qiu, T., Wang, X., & Zhang, B. (2021). Prediction of surface residual stress in end milling with Gaussian process regression. Measurement, 178, 109333.CrossRef
35.
go back to reference Liu, K., Hu, X., Wei, Z., Li, Y., & Jiang, Y. (2019). Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries. IEEE Transactions on Transportation Electrification, 5(4), 1225–1236.CrossRef Liu, K., Hu, X., Wei, Z., Li, Y., & Jiang, Y. (2019). Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries. IEEE Transactions on Transportation Electrification, 5(4), 1225–1236.CrossRef
36.
go back to reference Rasmussen, C. E., & Nickisch, H. (2010). Gaussian processes for machine learning (GPML) toolbox. The Journal of Machine Learning Research, 11, 3011–3015.MathSciNet Rasmussen, C. E., & Nickisch, H. (2010). Gaussian processes for machine learning (GPML) toolbox. The Journal of Machine Learning Research, 11, 3011–3015.MathSciNet
37.
go back to reference Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.MathSciNetCrossRef Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.MathSciNetCrossRef
38.
go back to reference Su, M., Zhang, Z., Zhu, Y., & Zha, D. (2019). Data-driven natural gas spot price forecasting with least squares regression boosting algorithm. Energies, 12(6), 1094.CrossRef Su, M., Zhang, Z., Zhu, Y., & Zha, D. (2019). Data-driven natural gas spot price forecasting with least squares regression boosting algorithm. Energies, 12(6), 1094.CrossRef
39.
40.
go back to reference Moonam, H. M., Qin, X., & Zhang, J. (2019). Utilizing data mining techniques to predict expected freeway travel time from experienced travel time. Mathematics and Computers in Simulation, 155, 154–167.MathSciNetCrossRef Moonam, H. M., Qin, X., & Zhang, J. (2019). Utilizing data mining techniques to predict expected freeway travel time from experienced travel time. Mathematics and Computers in Simulation, 155, 154–167.MathSciNetCrossRef
41.
go back to reference Eigenschink, P., Reutterer, T., Vamosi, S., Vamosi, R., Sun, C., & Kalcher, K. (2023). Deep generative models for synthetic data: A survey. IEEE Access, 11, 47304–47320.CrossRef Eigenschink, P., Reutterer, T., Vamosi, S., Vamosi, R., Sun, C., & Kalcher, K. (2023). Deep generative models for synthetic data: A survey. IEEE Access, 11, 47304–47320.CrossRef
42.
go back to reference Thogarchety, P., & Das, K. (2023). Synthetic data generation using genetic algorithm. In 2nd International conference for innovation in technology (INOCON) (pp. 1–6). Thogarchety, P., & Das, K. (2023). Synthetic data generation using genetic algorithm. In 2nd International conference for innovation in technology (INOCON) (pp. 1–6).
43.
go back to reference Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.CrossRef Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.CrossRef
44.
go back to reference Stone, M. (1978). Cross-validation: A review. Statistics: A Journal of Theoretical and Applied Statistics, 9(1), 127–139.MathSciNet Stone, M. (1978). Cross-validation: A review. Statistics: A Journal of Theoretical and Applied Statistics, 9(1), 127–139.MathSciNet
45.
go back to reference Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623.CrossRef Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623.CrossRef
Metadata
Title
Average Localization Error Prediction for 5G Networks: An Investigation of Different Machine Learning Algorithms
Authors
Osman Altay
Müge Erel-Özçevik
Elif Varol Altay
Yusuf Özçevik
Publication date
18-06-2024
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2024
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-11257-2