Skip to main content
Top
Published in: Journal of Materials Science 22/2020

12-02-2020 | Interface Science

Axial misfit stress relaxation in core–shell nanowires with polyhedral cores through the nucleation of misfit prismatic dislocation loops

Authors: S. A. Krasnitckii, A. M. Smirnov, M. Yu. Gutkin

Published in: Journal of Materials Science | Issue 22/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The theoretical model of axial misfit stress relaxation in polyhedral core–shell nanowires through the nucleation of prismatic dislocation loops is suggested. Different sites of dislocation nucleation in the nanowires with hexagonal, square and triangular shapes of the core cross section are considered. The energy change caused by the dislocation nucleation is calculated for every case under the assumption that the shell thickness is much smaller than the core size. The corresponding critical values of the misfit parameter for the dislocation nucleation are determined and compared with each other. According to this comparison, the most favorable sites in the core–shell nanowires and the optimal shapes of the dislocation loops are defined. Nanowires with round, hexagonal, square and triangle shapes of the core cross section are ranged with respect to their stability to dislocation loop nucleation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Lauhon LJ, Gudiksen MS, Lieber CM (2004) Semiconductor nanowire heterostructures. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 362(1819):1247–1260CrossRef Lauhon LJ, Gudiksen MS, Lieber CM (2004) Semiconductor nanowire heterostructures. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 362(1819):1247–1260CrossRef
2.
go back to reference Chopra N (2010) Multifunctional and multicomponent heterostructured one-dimensional nanostructures: advances in growth, characterisation, and applications. Mater Technol 25(3–4):212–230CrossRef Chopra N (2010) Multifunctional and multicomponent heterostructured one-dimensional nanostructures: advances in growth, characterisation, and applications. Mater Technol 25(3–4):212–230CrossRef
3.
go back to reference Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56(2):175–287CrossRef Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56(2):175–287CrossRef
4.
go back to reference Costas A, Florica C, Preda N, Apostol N, Kuncser A, Nitescu A, Enculescu I (2019) Radial heterojunction based on single ZnO–CuxO core–shell nanowire for photodetector applications. Sci Rep 9(1):5553(1)–5553(9)CrossRef Costas A, Florica C, Preda N, Apostol N, Kuncser A, Nitescu A, Enculescu I (2019) Radial heterojunction based on single ZnO–CuxO core–shell nanowire for photodetector applications. Sci Rep 9(1):5553(1)–5553(9)CrossRef
5.
go back to reference Park S, Kim S, Sun GJ, Byeon DB, Hyun SK, Lee WI, Lee C (2016) ZnO-core/ZnSe-shell nanowire UV photodetector. J Alloys Compd 658:459–464CrossRef Park S, Kim S, Sun GJ, Byeon DB, Hyun SK, Lee WI, Lee C (2016) ZnO-core/ZnSe-shell nanowire UV photodetector. J Alloys Compd 658:459–464CrossRef
6.
go back to reference Ghamgosar P, Rigoni F, Gilzad Kohan M, You S, Abarca Morales E, Mazzaro R et al (2019) Self-powered photodetectors based on core–shell ZnO–Co3O4 nanowire heterojunctions. ACS Appl Mater Interfaces 11(26):23454–23462CrossRef Ghamgosar P, Rigoni F, Gilzad Kohan M, You S, Abarca Morales E, Mazzaro R et al (2019) Self-powered photodetectors based on core–shell ZnO–Co3O4 nanowire heterojunctions. ACS Appl Mater Interfaces 11(26):23454–23462CrossRef
7.
go back to reference Singh N, Ponzoni A, Gupta RK, Lee PS, Comini E (2011) Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing. Sens Actuators B Chem 160(1):1346–1351CrossRef Singh N, Ponzoni A, Gupta RK, Lee PS, Comini E (2011) Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing. Sens Actuators B Chem 160(1):1346–1351CrossRef
8.
go back to reference Park S, Ko H, Kim S, Lee C (2014) Role of the interfaces in multiple networked one-dimensional core–shell nanostructured gas sensors. ACS Appl Mater Interfaces 6(12):9595–9600CrossRef Park S, Ko H, Kim S, Lee C (2014) Role of the interfaces in multiple networked one-dimensional core–shell nanostructured gas sensors. ACS Appl Mater Interfaces 6(12):9595–9600CrossRef
9.
go back to reference Kim JH, Mirzaei A, Kim HW, Kim SS (2018) Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core–shell nanowires. Sens Actuators B Chem 267:597–607CrossRef Kim JH, Mirzaei A, Kim HW, Kim SS (2018) Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core–shell nanowires. Sens Actuators B Chem 267:597–607CrossRef
10.
go back to reference Karnati P, Akbar S, Morris PA (2019) Conduction mechanisms in one dimensional core–shell nanostructures for gas sensing: a review. Sens Actuators B Chem 295:127–143CrossRef Karnati P, Akbar S, Morris PA (2019) Conduction mechanisms in one dimensional core–shell nanostructures for gas sensing: a review. Sens Actuators B Chem 295:127–143CrossRef
11.
go back to reference Tak Y, Hong SJ, Lee JS, Yong K (2009) Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem 19(33):5945–5951CrossRef Tak Y, Hong SJ, Lee JS, Yong K (2009) Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem 19(33):5945–5951CrossRef
12.
go back to reference Tang J, Huo Z, Brittman S, Gao H, Yang P (2011) Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat Nanotechnol 6(9):568–571CrossRef Tang J, Huo Z, Brittman S, Gao H, Yang P (2011) Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat Nanotechnol 6(9):568–571CrossRef
13.
go back to reference Boro B, Gogoi B, Rajbongshi BM, Ramchiary A (2018) Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew Sustain Energy Rev 81:2264–2270CrossRef Boro B, Gogoi B, Rajbongshi BM, Ramchiary A (2018) Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew Sustain Energy Rev 81:2264–2270CrossRef
14.
go back to reference Dubrovskii VG, Cirlin GE, Ustinov VM (2009) Semiconductor nanowhiskers: synthesis, properties, and applications. Semiconductors 43(12):1539–1584CrossRef Dubrovskii VG, Cirlin GE, Ustinov VM (2009) Semiconductor nanowhiskers: synthesis, properties, and applications. Semiconductors 43(12):1539–1584CrossRef
15.
go back to reference Kavanagh KL (2010) Misfit dislocations in nanowire heterostructures. Semicond Sci Technol 25(2):024006(1)–024006(7)CrossRef Kavanagh KL (2010) Misfit dislocations in nanowire heterostructures. Semicond Sci Technol 25(2):024006(1)–024006(7)CrossRef
16.
go back to reference Jenichen B, Hilse M, Herfort J, Trampert A (2015) Facetted growth of Fe3Si shells around GaAs nanowires on Si (111). J Cryst Growth 427:21–23CrossRef Jenichen B, Hilse M, Herfort J, Trampert A (2015) Facetted growth of Fe3Si shells around GaAs nanowires on Si (111). J Cryst Growth 427:21–23CrossRef
17.
go back to reference Nie A, Liu J, Li Q, Cheng Y, Dong C, Zhou W et al (2012) Epitaxial TiO2/SnO2 core–shell heterostructure by atomic layer deposition. J Mater Chem 22(21):10665–10671CrossRef Nie A, Liu J, Li Q, Cheng Y, Dong C, Zhou W et al (2012) Epitaxial TiO2/SnO2 core–shell heterostructure by atomic layer deposition. J Mater Chem 22(21):10665–10671CrossRef
18.
go back to reference Nguyen BM, Swartzentruber B, Ro YG, Dayeh SA (2015) Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires. Nano Lett 15(11):7258–7264CrossRef Nguyen BM, Swartzentruber B, Ro YG, Dayeh SA (2015) Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires. Nano Lett 15(11):7258–7264CrossRef
19.
go back to reference Goldthorpe IA, Marshall AF, McIntyre PC (2008) Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays. Nano Lett 8(11):4081–4086CrossRef Goldthorpe IA, Marshall AF, McIntyre PC (2008) Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays. Nano Lett 8(11):4081–4086CrossRef
20.
go back to reference Kavanagh KL, Salfi J, Savelyev I, Blumin M, Ruda HE (2011) Transport and strain relaxation in wurtzite InAs–GaAs core–shell heterowires. Appl Phys Lett 98(15):152103(1)–152103(3)CrossRef Kavanagh KL, Salfi J, Savelyev I, Blumin M, Ruda HE (2011) Transport and strain relaxation in wurtzite InAs–GaAs core–shell heterowires. Appl Phys Lett 98(15):152103(1)–152103(3)CrossRef
21.
go back to reference Popovitz-Biro R, Kretinin A, Von Huth P, Shtrikman H (2011) InAs/GaAs core–shell nanowires. Cryst Growth Des 11(9):3858–3865CrossRef Popovitz-Biro R, Kretinin A, Von Huth P, Shtrikman H (2011) InAs/GaAs core–shell nanowires. Cryst Growth Des 11(9):3858–3865CrossRef
22.
go back to reference Kavanagh KL, Saveliev I, Blumin M, Swadener G, Ruda HE (2012) Faster radial strain relaxation in InAs–GaAs core–shell heterowires. J Appl Phys 111(4):044301(1)–044301(9)CrossRef Kavanagh KL, Saveliev I, Blumin M, Swadener G, Ruda HE (2012) Faster radial strain relaxation in InAs–GaAs core–shell heterowires. J Appl Phys 111(4):044301(1)–044301(9)CrossRef
23.
go back to reference Perillat-Merceroz G, Thierry R, Jouneau PH, Ferret P, Feuillet G (2012) Strain relaxation by dislocation glide in ZnO/ZnMgO core–shell nanowires. Appl Phys Lett 100(17):173102(1)–173102(4)CrossRef Perillat-Merceroz G, Thierry R, Jouneau PH, Ferret P, Feuillet G (2012) Strain relaxation by dislocation glide in ZnO/ZnMgO core–shell nanowires. Appl Phys Lett 100(17):173102(1)–173102(4)CrossRef
24.
go back to reference Biermanns A, Rieger T, Bussone G, Pietsch U, Grützmacher D, Lepsa MI (2013) Axial strain in GaAs/InAs core–shell nanowires. Appl Phys Lett 102(4):043109(1)–043109(4)CrossRef Biermanns A, Rieger T, Bussone G, Pietsch U, Grützmacher D, Lepsa MI (2013) Axial strain in GaAs/InAs core–shell nanowires. Appl Phys Lett 102(4):043109(1)–043109(4)CrossRef
25.
go back to reference Dayeh SA, Tang W, Boioli F, Kavanagh KL, Zheng H, Wang J et al (2013) Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett 13(5):1869–1876CrossRef Dayeh SA, Tang W, Boioli F, Kavanagh KL, Zheng H, Wang J et al (2013) Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett 13(5):1869–1876CrossRef
26.
go back to reference Salehzadeh O, Kavanagh KL, Watkins SP (2013) Growth and strain relaxation of GaAs and GaP nanowires with GaSb shells. J Appl Phys 113(13):134309(1)–134309(7)CrossRef Salehzadeh O, Kavanagh KL, Watkins SP (2013) Growth and strain relaxation of GaAs and GaP nanowires with GaSb shells. J Appl Phys 113(13):134309(1)–134309(7)CrossRef
27.
go back to reference Rieger T, Grützmacher D, Lepsa MI (2015) Misfit dislocation free InAs/GaSb core–shell nanowires grown by molecular beam epitaxy. Nanoscale 7(1):356–364CrossRef Rieger T, Grützmacher D, Lepsa MI (2015) Misfit dislocation free InAs/GaSb core–shell nanowires grown by molecular beam epitaxy. Nanoscale 7(1):356–364CrossRef
28.
go back to reference Lewis RB, Nicolai L, Küpers H, Ramsteiner M, Trampert A, Geelhaar L (2016) Anomalous strain relaxation in core–shell nanowire heterostructures via simultaneous coherent and incoherent growth. Nano Lett 17(1):136–142CrossRef Lewis RB, Nicolai L, Küpers H, Ramsteiner M, Trampert A, Geelhaar L (2016) Anomalous strain relaxation in core–shell nanowire heterostructures via simultaneous coherent and incoherent growth. Nano Lett 17(1):136–142CrossRef
29.
go back to reference Lin YC, Kim D, Li Z, Nguyen BM, Li N, Zhang S, Yoo J (2017) Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures. Nanoscale 9:1213–1220CrossRef Lin YC, Kim D, Li Z, Nguyen BM, Li N, Zhang S, Yoo J (2017) Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures. Nanoscale 9:1213–1220CrossRef
30.
go back to reference Lazarev S, Göransson DJO, Borgström M, Messing ME, Xu HQ, Dzhigaev D, Yefanov OM, Bauer S, Baumbach T, Feidenhans’l R, Samuelson L, Vartanyants IA (2019) Revealing misfit dislocations in InAsxP1−x–InP core–shell nanowires by x-ray diffraction. Nanotechnology 30:505703(1)–505703(11)CrossRef Lazarev S, Göransson DJO, Borgström M, Messing ME, Xu HQ, Dzhigaev D, Yefanov OM, Bauer S, Baumbach T, Feidenhans’l R, Samuelson L, Vartanyants IA (2019) Revealing misfit dislocations in InAsxP1−x–InP core–shell nanowires by x-ray diffraction. Nanotechnology 30:505703(1)–505703(11)CrossRef
31.
go back to reference Gutkin MYu, Ovid’ko IA, Sheinerman AG (2000) Misfit dislocations in wire composite solids. J Phys Condens Matter 12(25):5391–5401CrossRef Gutkin MYu, Ovid’ko IA, Sheinerman AG (2000) Misfit dislocations in wire composite solids. J Phys Condens Matter 12(25):5391–5401CrossRef
32.
go back to reference Sheinerman AG, Gutkin MYu (2001) Misfit disclinations and dislocation walls in a two-phase cylindrical composite. Physica Status Solidi (a) 184(2):485–505CrossRef Sheinerman AG, Gutkin MYu (2001) Misfit disclinations and dislocation walls in a two-phase cylindrical composite. Physica Status Solidi (a) 184(2):485–505CrossRef
33.
go back to reference Ovid’ko IA, Sheinerman AG (2004) Misfit dislocation loops in composite nanowires. Philos Mag 84(20):2103–2118CrossRef Ovid’ko IA, Sheinerman AG (2004) Misfit dislocation loops in composite nanowires. Philos Mag 84(20):2103–2118CrossRef
34.
go back to reference Raychaudhuri S, Yu ET (2006) Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 24(4):2053–2059CrossRef Raychaudhuri S, Yu ET (2006) Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 24(4):2053–2059CrossRef
35.
go back to reference Raychaudhuri S, Yu ET (2006) Critical dimensions in coherently strained coaxial nanowire heterostructures. J Appl Phys 99(11):114308(1)–114308(7)CrossRef Raychaudhuri S, Yu ET (2006) Critical dimensions in coherently strained coaxial nanowire heterostructures. J Appl Phys 99(11):114308(1)–114308(7)CrossRef
36.
go back to reference Aifantis KE, Kolesnikova AL, Romanov AE (2007) Nucleation of misfit dislocations and plastic deformation in core/shell nanowires. Philos Mag 87(30):4731–4757CrossRef Aifantis KE, Kolesnikova AL, Romanov AE (2007) Nucleation of misfit dislocations and plastic deformation in core/shell nanowires. Philos Mag 87(30):4731–4757CrossRef
37.
go back to reference Colin J (2010) Prismatic dislocation loops in strained core–shell nanowire heterostructures. Phys Rev B 82(5):054118(1)–054118(5)CrossRef Colin J (2010) Prismatic dislocation loops in strained core–shell nanowire heterostructures. Phys Rev B 82(5):054118(1)–054118(5)CrossRef
38.
go back to reference Wang X, Pan E, Chung PW (2010) Misfit dislocation dipoles in wire composite solids. Int J Plast 26:1415–1420CrossRef Wang X, Pan E, Chung PW (2010) Misfit dislocation dipoles in wire composite solids. Int J Plast 26:1415–1420CrossRef
39.
go back to reference Gutkin MYu, Kuzmin KV, Sheinerman AG (2011) Misfit stresses and relaxation mechanisms in a nanowire containing a coaxial cylindrical inclusion of finite length. Physica Status Solidi (b) 248(7):1651–1657CrossRef Gutkin MYu, Kuzmin KV, Sheinerman AG (2011) Misfit stresses and relaxation mechanisms in a nanowire containing a coaxial cylindrical inclusion of finite length. Physica Status Solidi (b) 248(7):1651–1657CrossRef
40.
go back to reference Chu H, Zhou C, Wang J, Beyerlein IJ (2012) Misfit strain relaxation mechanisms in core/shell nanowires. JOM 64(10):1258–1262CrossRef Chu H, Zhou C, Wang J, Beyerlein IJ (2012) Misfit strain relaxation mechanisms in core/shell nanowires. JOM 64(10):1258–1262CrossRef
41.
go back to reference Haapamaki CM, Baugh J, LaPierre RR (2012) Critical shell thickness for InAs–AlxIn1−xAs(P) core–shell nanowires. J Appl Phys 112(12):124305(1)–124305(6)CrossRef Haapamaki CM, Baugh J, LaPierre RR (2012) Critical shell thickness for InAs–AlxIn1−xAs(P) core–shell nanowires. J Appl Phys 112(12):124305(1)–124305(6)CrossRef
42.
go back to reference Salehzadeh O, Kavanagh KL, Watkins SP (2013) Geometric limits of coherent III–V core/shell nanowires. J Appl Phys 114(5):054301(1)–054301(8)CrossRef Salehzadeh O, Kavanagh KL, Watkins SP (2013) Geometric limits of coherent III–V core/shell nanowires. J Appl Phys 114(5):054301(1)–054301(8)CrossRef
43.
go back to reference Zhao YX, Fang QH, Liu YW (2013) Edge misfit dislocations in core–shell nanowire with surface/interface effects and different elastic constants. Int J Mech Sci 74:173–184CrossRef Zhao YX, Fang QH, Liu YW (2013) Edge misfit dislocations in core–shell nanowire with surface/interface effects and different elastic constants. Int J Mech Sci 74:173–184CrossRef
44.
go back to reference Enzevaee C, Gutkin MYu, Shodja HM (2014) Surface/interface effects on the formation of misfit dislocation in a core–shell nanowire. Philos Mag 94(5):492–519CrossRef Enzevaee C, Gutkin MYu, Shodja HM (2014) Surface/interface effects on the formation of misfit dislocation in a core–shell nanowire. Philos Mag 94(5):492–519CrossRef
45.
go back to reference Colin J (2015) Circular dislocation loop in a three-layer nanowire. Int J Solids Struct 63:114–120CrossRef Colin J (2015) Circular dislocation loop in a three-layer nanowire. Int J Solids Struct 63:114–120CrossRef
46.
go back to reference Gutkin MY, Smirnov AM (2015) Initial stages of misfit stress relaxation in composite nanostructures through generation of rectangular prismatic dislocation loops. Acta Mater 88:91–101CrossRef Gutkin MY, Smirnov AM (2015) Initial stages of misfit stress relaxation in composite nanostructures through generation of rectangular prismatic dislocation loops. Acta Mater 88:91–101CrossRef
47.
go back to reference Gutkin MY, Smirnov AM (2016) Initial stages of misfit stress relaxation through the formation of prismatic dislocation loops in GaN–Ga2O3 composite nanostructures. Phys Solid State 58(8):1611–1621CrossRef Gutkin MY, Smirnov AM (2016) Initial stages of misfit stress relaxation through the formation of prismatic dislocation loops in GaN–Ga2O3 composite nanostructures. Phys Solid State 58(8):1611–1621CrossRef
48.
go back to reference Krasnitckii SA, Kolomoetc DR, Smirnov AM, Gutkin MYu (2018) Misfit stress relaxation in composite core–shell nanowires with parallelepiped cores using rectangular prismatic dislocation loops. J Phys Conf Ser 993(1):012021(1)–012021(5) Krasnitckii SA, Kolomoetc DR, Smirnov AM, Gutkin MYu (2018) Misfit stress relaxation in composite core–shell nanowires with parallelepiped cores using rectangular prismatic dislocation loops. J Phys Conf Ser 993(1):012021(1)–012021(5)
49.
go back to reference Arjmand M, Benjamin C, Szlufarska I (2019) Analytical elastoplastic analysis of heteroepitaxial core–shell nanowires. AIP Adv 9(5):055119(1)–055119(9)CrossRef Arjmand M, Benjamin C, Szlufarska I (2019) Analytical elastoplastic analysis of heteroepitaxial core–shell nanowires. AIP Adv 9(5):055119(1)–055119(9)CrossRef
50.
go back to reference Smirnov AM, Krasnitckii SA, Gutkin MYu (2020) Generation of misfit dislocations in a core–shell nanowire near the edge of prismatic core. Acta Mater 186:494–510CrossRef Smirnov AM, Krasnitckii SA, Gutkin MYu (2020) Generation of misfit dislocations in a core–shell nanowire near the edge of prismatic core. Acta Mater 186:494–510CrossRef
51.
go back to reference Ovidko IA, Sheinerman AG (2002) Perfect, partial, and split dislocations in quantum dots. Phys Rev B 66:245309(1)–245309(8) Ovidko IA, Sheinerman AG (2002) Perfect, partial, and split dislocations in quantum dots. Phys Rev B 66:245309(1)–245309(8)
52.
go back to reference Mikaelyan KN, Gutkin MYu, Borodin EN, Romanov AE (2019) Dislocation emission from the edge of a misfitting nanowire embedded in a free-standing nanolayer. Int J Solids Struct 161:127–135CrossRef Mikaelyan KN, Gutkin MYu, Borodin EN, Romanov AE (2019) Dislocation emission from the edge of a misfitting nanowire embedded in a free-standing nanolayer. Int J Solids Struct 161:127–135CrossRef
53.
go back to reference Gutkin MYu, Smirnov AM (2014) Generation of rectangular prismatic dislocation loops in shells and cores of composite nanoparticles. Phys Solid State 56(4):731–738CrossRef Gutkin MYu, Smirnov AM (2014) Generation of rectangular prismatic dislocation loops in shells and cores of composite nanoparticles. Phys Solid State 56(4):731–738CrossRef
54.
go back to reference Gutkin MYu, Krasnitckii SA, Smirnov AM, Kolesnikova AL, Romanov AE (2015) Dislocation loops in solid and hollow semiconductor and metal nanoheterostructures. Phys Solid State 57(6):1177–1182CrossRef Gutkin MYu, Krasnitckii SA, Smirnov AM, Kolesnikova AL, Romanov AE (2015) Dislocation loops in solid and hollow semiconductor and metal nanoheterostructures. Phys Solid State 57(6):1177–1182CrossRef
55.
go back to reference Ding Y, Fan F, Tian Z, Wang Z (2010) Atomic structure of Au–Pd bimetallic alloyed nanoparticles. J Am Chem Soc 132:12480–12486CrossRef Ding Y, Fan F, Tian Z, Wang Z (2010) Atomic structure of Au–Pd bimetallic alloyed nanoparticles. J Am Chem Soc 132:12480–12486CrossRef
56.
go back to reference Bhattarai N, Casillas G, Ponce A, Jose-Yacaman M (2013) Strain-release mechanisms in bimetallic core–shell nanoparticles as revealed by Cs-corrected STEM. Surf Sci 609:161–166CrossRef Bhattarai N, Casillas G, Ponce A, Jose-Yacaman M (2013) Strain-release mechanisms in bimetallic core–shell nanoparticles as revealed by Cs-corrected STEM. Surf Sci 609:161–166CrossRef
57.
go back to reference Ding Y, Sun X, Wang ZL, Sun S (2012) Misfit dislocations in multimetallic core–shelled nanoparticles. Appl Phys Lett 100(11):111603(1)–111603(4)CrossRef Ding Y, Sun X, Wang ZL, Sun S (2012) Misfit dislocations in multimetallic core–shelled nanoparticles. Appl Phys Lett 100(11):111603(1)–111603(4)CrossRef
58.
go back to reference Zou WN, He QC, Zheng QS (2012) Inclusions in a finite elastic body. Int J Solids Struct 49(13):1627–1636CrossRef Zou WN, He QC, Zheng QS (2012) Inclusions in a finite elastic body. Int J Solids Struct 49(13):1627–1636CrossRef
59.
go back to reference Krasnitckii SA, Smirnov AM, Gutkin MYu (2016) Misfit stresses in a core–shell nanowire with core in the form of long parallelepiped. J Phys Conf Ser 690(1):012022(1)–012022(6) Krasnitckii SA, Smirnov AM, Gutkin MYu (2016) Misfit stresses in a core–shell nanowire with core in the form of long parallelepiped. J Phys Conf Ser 690(1):012022(1)–012022(6)
60.
go back to reference Krasnitckii SA, Kolomoetc DR, Smirnov AM, Gutkin MYu (2017) Misfit stresses in a composite core–shell nanowire with an eccentric parallelepipedal core subjected to one-dimensional cross dilatation eigenstrain. J Phys Conf Ser 816(1):012043(1)–012043(6) Krasnitckii SA, Kolomoetc DR, Smirnov AM, Gutkin MYu (2017) Misfit stresses in a composite core–shell nanowire with an eccentric parallelepipedal core subjected to one-dimensional cross dilatation eigenstrain. J Phys Conf Ser 816(1):012043(1)–012043(6)
62.
go back to reference Kolesnikova AL, Soroka RM, Romanov AE (2013) Defects in the elastic continuum: classification, fields and physical analogies. Mater Phys Mech 17:71–91 Kolesnikova AL, Soroka RM, Romanov AE (2013) Defects in the elastic continuum: classification, fields and physical analogies. Mater Phys Mech 17:71–91
63.
go back to reference Gutkin MYu, Ovid’ko IA, Sheinerman AG (2003) Misfit dislocations in composites with nano-wires. J Phys Condens Matter 15:3539–3554CrossRef Gutkin MYu, Ovid’ko IA, Sheinerman AG (2003) Misfit dislocations in composites with nano-wires. J Phys Condens Matter 15:3539–3554CrossRef
64.
go back to reference Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, Hoboken Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, Hoboken
Metadata
Title
Axial misfit stress relaxation in core–shell nanowires with polyhedral cores through the nucleation of misfit prismatic dislocation loops
Authors
S. A. Krasnitckii
A. M. Smirnov
M. Yu. Gutkin
Publication date
12-02-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 22/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04401-3

Other articles of this Issue 22/2020

Journal of Materials Science 22/2020 Go to the issue

Premium Partners