Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Background and Objectives

Author : Dongshuai Hou

Published in: Molecular Simulation on Cement-Based Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Concrete, the most widely used building material, has been applied to make pavements, architectural structures, foundations, motorways, roads, overpasses, parking structures, brick, block walls and footings for gates, fences, and poles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, Z. (2011). Advanced Concrete Technology. Li, Z. (2011). Advanced Concrete Technology.
2.
go back to reference Barcelo, L., Kline, J., Walenta, G., & Gartner, E. (2014). Cement and carbon emissions. Materials and Structures, 47(6), 1055–1065.CrossRef Barcelo, L., Kline, J., Walenta, G., & Gartner, E. (2014). Cement and carbon emissions. Materials and Structures, 47(6), 1055–1065.CrossRef
3.
go back to reference Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research, 78, 126–142.CrossRef Gartner, E., & Hirao, H. (2015). A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research, 78, 126–142.CrossRef
4.
go back to reference Lollini, F., Redaelli, E., & Bertolini, L. (2016). A study on the applicability of the efficiency factor of supplementary cementitious materials to durability properties. Construction and Building Materials, 120, 284–292.CrossRef Lollini, F., Redaelli, E., & Bertolini, L. (2016). A study on the applicability of the efficiency factor of supplementary cementitious materials to durability properties. Construction and Building Materials, 120, 284–292.CrossRef
5.
go back to reference Mehta, P. K. (1997). Durability—Critical issues for the future. Concrete International, 19(7), 27–33. Mehta, P. K. (1997). Durability—Critical issues for the future. Concrete International, 19(7), 27–33.
6.
go back to reference Monteiro, P. (2006). Concrete: Microstructure, properties, and materials. McGraw-Hill Publishing. Monteiro, P. (2006). Concrete: Microstructure, properties, and materials. McGraw-Hill Publishing.
7.
go back to reference Persson, B. (1998). Experimental studies on shrinkage of high-performance concrete. Cement and Concrete Research, 28(7), 1023–1036.CrossRef Persson, B. (1998). Experimental studies on shrinkage of high-performance concrete. Cement and Concrete Research, 28(7), 1023–1036.CrossRef
8.
go back to reference Feiz, R., Ammenberg, J., Baas, L., Eklund, M., Helgstrand, A., & Marshall, R. (2015). Improving the CO2, performance of cement. Part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. Journal of Cleaner Production, 98, 272–281.CrossRef Feiz, R., Ammenberg, J., Baas, L., Eklund, M., Helgstrand, A., & Marshall, R. (2015). Improving the CO2, performance of cement. Part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. Journal of Cleaner Production, 98, 272–281.CrossRef
9.
go back to reference Neville, A. (2004). The confused world of sulfate attack on concrete. Cement and Concrete Research, 34(8), 1275–1296.CrossRef Neville, A. (2004). The confused world of sulfate attack on concrete. Cement and Concrete Research, 34(8), 1275–1296.CrossRef
10.
go back to reference Hobbs, D. W., & Taylor, M. G. (2000). Nature of the thaumasite sulfate attack mechanism in field concrete. Cement and Concrete Research, 30(4), 529–533.CrossRef Hobbs, D. W., & Taylor, M. G. (2000). Nature of the thaumasite sulfate attack mechanism in field concrete. Cement and Concrete Research, 30(4), 529–533.CrossRef
11.
go back to reference Shi, Z., Lothenbach, B., Geiker, M. R., Kaufmann, J., Leemann, A., Ferreiro, S., et al. (2016). Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cement and Concrete Research, 88, 60–72.CrossRef Shi, Z., Lothenbach, B., Geiker, M. R., Kaufmann, J., Leemann, A., Ferreiro, S., et al. (2016). Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cement and Concrete Research, 88, 60–72.CrossRef
12.
go back to reference Mao, J., Jin, W., Zhang, H., Chen, X. U., & Xia, J. (2015). Technology for enhancing durability of structures of sea-sand concrete and its application. Journal of Chinese Society for Corrosion & Protection, 35(6). Mao, J., Jin, W., Zhang, H., Chen, X. U., & Xia, J. (2015). Technology for enhancing durability of structures of sea-sand concrete and its application. Journal of Chinese Society for Corrosion & Protection, 35(6).
13.
go back to reference Bernal, S. A., Rodríguez, E. D., Kirchheim, A. P., & Provis, J. L. (2016). Management and valorisation of wastes through use in producing alkali-activated cement materials. Journal of Chemical Technology and Biotechnology, 91(9), 2365–2388.CrossRef Bernal, S. A., Rodríguez, E. D., Kirchheim, A. P., & Provis, J. L. (2016). Management and valorisation of wastes through use in producing alkali-activated cement materials. Journal of Chemical Technology and Biotechnology, 91(9), 2365–2388.CrossRef
14.
go back to reference Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete—A review. Construction and Building Materials, 24(11), 2060–2071.CrossRef Sanchez, F., & Sobolev, K. (2010). Nanotechnology in concrete—A review. Construction and Building Materials, 24(11), 2060–2071.CrossRef
15.
go back to reference Richardson, I. G. (2008). The calcium silicate hydrates. Cement & Concrete Research, 38(2), 137–158.CrossRef Richardson, I. G. (2008). The calcium silicate hydrates. Cement & Concrete Research, 38(2), 137–158.CrossRef
16.
go back to reference Mirzahosseini, M., & Riding, K. A. (2015). Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM). Cement & Concrete Composites, 56, 95–105.CrossRef Mirzahosseini, M., & Riding, K. A. (2015). Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM). Cement & Concrete Composites, 56, 95–105.CrossRef
17.
go back to reference Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium–silicate–hydrate in cement. Nature Materials, 6, 311.CrossRef Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium–silicate–hydrate in cement. Nature Materials, 6, 311.CrossRef
18.
go back to reference Hong, S. Y., & Glasser, F. P. (2002). Alkali sorption by C–S–H and C–A–S–H gels: Part II. Role of alumina. Cement & Concrete Research, 32(7), 1101–1111. Hong, S. Y., & Glasser, F. P. (2002). Alkali sorption by C–S–H and C–A–S–H gels: Part II. Role of alumina. Cement & Concrete Research, 32(7), 1101–1111.
19.
go back to reference Pan, Z., He, L., Qiu, L., Korayem, A. H., Li, G., Zhu, J. W., et al. (2015). Mechanical properties and microstructure of a graphene oxide–cement composite. Cement & Concrete Composites, 58, 140–147.CrossRef Pan, Z., He, L., Qiu, L., Korayem, A. H., Li, G., Zhu, J. W., et al. (2015). Mechanical properties and microstructure of a graphene oxide–cement composite. Cement & Concrete Composites, 58, 140–147.CrossRef
20.
go back to reference Chong, Y. R., Chang, E. K., Lee, C. S., Kim, K. I., & Lee, S. K. (1999). Preparation and characterization of absorbent polymer-cement composites. Cement and Concrete Research, 29(2), 231–236.CrossRef Chong, Y. R., Chang, E. K., Lee, C. S., Kim, K. I., & Lee, S. K. (1999). Preparation and characterization of absorbent polymer-cement composites. Cement and Concrete Research, 29(2), 231–236.CrossRef
Metadata
Title
Background and Objectives
Author
Dongshuai Hou
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8711-1_1

Premium Partners