Skip to main content
Top

2019 | OriginalPaper | Chapter

Bacterial Cellulose Nanocomposites

Authors : N. Pa’e, I. I. Muhamad, Z. Hashim, A. H. M. Yusof

Published in: Bio-based Polymers and Nanocomposites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bacterial cellulose (BC) is a biopolymer with high purity of cellulose and excellent mechanical properties. Increased interest in the use of natural polymer makes BC as an excellent alternative for plant cellulose. Although both celluloses consist of unbranched pellicle with chemically equivalent structure, bacterial cellulose exhibits greater properties and potential in wider applications. The structure of bacterial cellulose that consists only glucose monomer and nanosized cellulose fibres secreted by the bacteria induces it to have high water-holding capacity, high crystallinity, high degree of polymerization and high mechanical strength. Furthermore, the characterization of BC can be certainly altered by incorporation with materials that are not essential for the bacterial growth into the fermentation medium. This unique property of BC opens a new gate for the development of new cellulose nanocomposites with desired properties by the incorporation of selective suitable materials. The BC nanocomposites produced opens new opportunity for various usages of BC in different fields of application in the pharmaceutical, chemical, medical and wastewater treatment plants.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aleshin AN, Berestennikov AS, Krylov PS, Shcherbakov IP, Petrov VN, Trapeznikova IN, Mamalimov RI, Khripunov AK, Tkachenkob AA (2015) Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synth Met 199:147–151CrossRef Aleshin AN, Berestennikov AS, Krylov PS, Shcherbakov IP, Petrov VN, Trapeznikova IN, Mamalimov RI, Khripunov AK, Tkachenkob AA (2015) Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synth Met 199:147–151CrossRef
go back to reference Amin MCM, Abadi AG, Ahmad N, Katas H, Jamal JA (2012) Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malaysiana 41(5):561–568 Amin MCM, Abadi AG, Ahmad N, Katas H, Jamal JA (2012) Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malaysiana 41(5):561–568
go back to reference Arias SL, Shetty AR, Senpan A, Echeverry-Rendón M, Reece LM, JAllain JP (2016) Fabrication of a functionalized magnetic bacterial nanocellulose with iron oxide nanoparticles. J Vis Exp 26:111 Arias SL, Shetty AR, Senpan A, Echeverry-Rendón M, Reece LM, JAllain JP (2016) Fabrication of a functionalized magnetic bacterial nanocellulose with iron oxide nanoparticles. J Vis Exp 26:111
go back to reference Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418CrossRef Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418CrossRef
go back to reference Barud HGO, Barud HS, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, de Oliveira Almeida Petersen AL, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJL (2016) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51 Barud HGO, Barud HS, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, de Oliveira Almeida Petersen AL, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJL (2016) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51
go back to reference Bertocchi C, Delneri D, Signore S, Weng Z, Bruschi CV (1997) Characterization of microbial cellulose from a high-producing mutagenized Acetobacter pasteurianus strain. Biochem Biophys Acta 1336:211–217CrossRef Bertocchi C, Delneri D, Signore S, Weng Z, Bruschi CV (1997) Characterization of microbial cellulose from a high-producing mutagenized Acetobacter pasteurianus strain. Biochem Biophys Acta 1336:211–217CrossRef
go back to reference Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetics aspects of bacterial cellulose formation in nata de coco culture system. Carbohydr Polym 40:137–143CrossRef Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetics aspects of bacterial cellulose formation in nata de coco culture system. Carbohydr Polym 40:137–143CrossRef
go back to reference Busuioc C, Stroescu M, Stoica-Guzun A, Voicu G, Jinga SI (2016) Fabrication of 3D calcium phosphates based scaffolds using bacterial cellulose as template. Ceram Int 42(14):15449–15458CrossRef Busuioc C, Stroescu M, Stoica-Guzun A, Voicu G, Jinga SI (2016) Fabrication of 3D calcium phosphates based scaffolds using bacterial cellulose as template. Ceram Int 42(14):15449–15458CrossRef
go back to reference Charpentier PA, Maguire A, Wan WK (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252:6360–6367CrossRef Charpentier PA, Maguire A, Wan WK (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252:6360–6367CrossRef
go back to reference Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359CrossRef Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359CrossRef
go back to reference Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3(12) Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3(12)
go back to reference Czaja W, Romanovicz D, Brown RM Jr (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3):401–411 Czaja W, Romanovicz D, Brown RM Jr (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3):401–411
go back to reference Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wound. Biomaterials 27:145–151CrossRef Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wound. Biomaterials 27:145–151CrossRef
go back to reference da Silva R, Sierakowski MR, Bassani HP, Zawadzki SF, Pirich CL, Ono L, de Freitas RA (2016) Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol. Int J Biol Macromol 86:599–605CrossRef da Silva R, Sierakowski MR, Bassani HP, Zawadzki SF, Pirich CL, Ono L, de Freitas RA (2016) Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol. Int J Biol Macromol 86:599–605CrossRef
go back to reference Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144:447–453CrossRef Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144:447–453CrossRef
go back to reference De Wulf P, Joris K, Vandamme EJ (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in keto gluconate synthesis. J Chem Technol Biotechnol 67:665–672 De Wulf P, Joris K, Vandamme EJ (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in keto gluconate synthesis. J Chem Technol Biotechnol 67:665–672
go back to reference Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923CrossRef Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923CrossRef
go back to reference Feng Y, Zhanga X, Shena Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87:644–649CrossRef Feng Y, Zhanga X, Shena Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87:644–649CrossRef
go back to reference Fijałkowski K, Żywicka A, Drozd R, Niemczyk A, Junka AF, Peitler D, Kordas M, Konopacki M, Szymczyk P, Fray ME, Rakoczy R (2015) A modification of bacterial cellulose through exposure to the rotating magnetic field. Carbohydr Polym 133:52–60CrossRef Fijałkowski K, Żywicka A, Drozd R, Niemczyk A, Junka AF, Peitler D, Kordas M, Konopacki M, Szymczyk P, Fray ME, Rakoczy R (2015) A modification of bacterial cellulose through exposure to the rotating magnetic field. Carbohydr Polym 133:52–60CrossRef
go back to reference Foresti ML, Vázquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467CrossRef Foresti ML, Vázquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467CrossRef
go back to reference Fu L, Zhang Y, Zhang J, Yang G (2011) Bacterial cellulose for skin repair materials. In: Fazel-Rezai R (ed) Biomedical engineering—frontiers and challenges. In-Tech.Rijeka, Croatia Fu L, Zhang Y, Zhang J, Yang G (2011) Bacterial cellulose for skin repair materials. In: Fazel-Rezai R (ed) Biomedical engineering—frontiers and challenges. In-Tech.Rijeka, Croatia
go back to reference Gao C, Yan T, Du J, He F, Luo H, Wan Y (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε-polylysine nanocoatings. Food Hydrocolloids 36:204–211CrossRef Gao C, Yan T, Du J, He F, Luo H, Wan Y (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε-polylysine nanocoatings. Food Hydrocolloids 36:204–211CrossRef
go back to reference Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Strømme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48(26):7623–7631CrossRef Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Strømme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48(26):7623–7631CrossRef
go back to reference George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy SS (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292CrossRef George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy SS (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292CrossRef
go back to reference Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64(15):2407–2413CrossRef Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64(15):2407–2413CrossRef
go back to reference González-Sánchez C, Martínez-Aguirre A, Pérez-García B, Martínez-Urreaga J, de la Orden MU, Fonseca-Valero C (2014) Use of residual agricultural plastics and cellulose fibers for obtaining sustainable eco-composites prevents waste generation. J Clean Prod 83:228–237CrossRef González-Sánchez C, Martínez-Aguirre A, Pérez-García B, Martínez-Urreaga J, de la Orden MU, Fonseca-Valero C (2014) Use of residual agricultural plastics and cellulose fibers for obtaining sustainable eco-composites prevents waste generation. J Clean Prod 83:228–237CrossRef
go back to reference Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377(1):88–93CrossRef Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377(1):88–93CrossRef
go back to reference Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRef Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRef
go back to reference Horii F, Yamamoto H, Hirai A (1997) Microstructural analysis of microfibrils of bacterial cellulose. Macromol Symp 120:197–205CrossRef Horii F, Yamamoto H, Hirai A (1997) Microstructural analysis of microfibrils of bacterial cellulose. Macromol Symp 120:197–205CrossRef
go back to reference Hsieh JT, Wang MJ, Lai JT, Liu HS (2016) A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J Taiwan Inst Chem Eng 63:46–51CrossRef Hsieh JT, Wang MJ, Lai JT, Liu HS (2016) A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J Taiwan Inst Chem Eng 63:46–51CrossRef
go back to reference Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8845CrossRef Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8845CrossRef
go back to reference Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRCS in agitated culture. J Biosci Bioeng 88(2):183–188CrossRef Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRCS in agitated culture. J Biosci Bioeng 88(2):183–188CrossRef
go back to reference Iguchi M, Huang HC, Chen LC, Lina SB, Chen HH (2011) Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohydr Polym 83:979–987CrossRef Iguchi M, Huang HC, Chen LC, Lina SB, Chen HH (2011) Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohydr Polym 83:979–987CrossRef
go back to reference Jeon S, Yoo YM, Park JW, Kim HJ, Hyun J (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14(12):1621–1624CrossRef Jeon S, Yoo YM, Park JW, Kim HJ, Hyun J (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14(12):1621–1624CrossRef
go back to reference Jonas R, Farah LF (1997) Production and application of microbial cellulose. J Polym Degrad Stab 59:101–106CrossRef Jonas R, Farah LF (1997) Production and application of microbial cellulose. J Polym Degrad Stab 59:101–106CrossRef
go back to reference Juncu G, Stoica-Guzun A, Stroescu M, Isopencu G, Jinga SI (2015) Drug release kinetics from carboxymethyl cellulose-bacterial cellulose composite films. Int J Pharm 510(2):485–492CrossRef Juncu G, Stoica-Guzun A, Stroescu M, Isopencu G, Jinga SI (2015) Drug release kinetics from carboxymethyl cellulose-bacterial cellulose composite films. Int J Pharm 510(2):485–492CrossRef
go back to reference Khairul AZ, Norhayati P, Ida IM (2016) An evaluation of fermentation period and discs rotation speed of rotary discs reactor for bacterial cellulose production. Sains Malaysiana 45(3):393–400 Khairul AZ, Norhayati P, Ida IM (2016) An evaluation of fermentation period and discs rotation speed of rotary discs reactor for bacterial cellulose production. Sains Malaysiana 45(3):393–400
go back to reference Kim SY, Kim JN, Wee YJ, Park DH, Ryu HW (2006) Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Appl Biochem Biotechnol 129–132:705–715CrossRef Kim SY, Kim JN, Wee YJ, Park DH, Ryu HW (2006) Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Appl Biochem Biotechnol 129–132:705–715CrossRef
go back to reference Kim J, Cai Z, Lee HS, Choi GS (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744CrossRef Kim J, Cai Z, Lee HS, Choi GS (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744CrossRef
go back to reference Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155CrossRef Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155CrossRef
go back to reference Kiziltas EE, Kiziltas A, Rhodes K, Emanetoglu NW, Blumentritt M, Gardner DJ (2016) Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydr Polym 136:1144–1151CrossRef Kiziltas EE, Kiziltas A, Rhodes K, Emanetoglu NW, Blumentritt M, Gardner DJ (2016) Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydr Polym 136:1144–1151CrossRef
go back to reference Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRef Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRef
go back to reference Lee RL, Paul JW, Willem HZ, Isak SP (2002) Microbial cellulose utilization: fundamentals and biotechnology. J Microbiol Mol Biol Rev 66(3):506–577CrossRef Lee RL, Paul JW, Willem HZ, Isak SP (2002) Microbial cellulose utilization: fundamentals and biotechnology. J Microbiol Mol Biol Rev 66(3):506–577CrossRef
go back to reference Lee BH, Kim HJ, Yang HS (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75–80CrossRef Lee BH, Kim HJ, Yang HS (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75–80CrossRef
go back to reference Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138:311–315CrossRef Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138:311–315CrossRef
go back to reference Li Z, Zhu BJ, Yang JX, Peng K, Zhou BH, Xu RQ, Hu WL, Chen SY, Wang HP (2011) Method for manufacture of bacterial cellulose hydrogel cold pack. CN Patent No 201020239963.4 Li Z, Zhu BJ, Yang JX, Peng K, Zhou BH, Xu RQ, Hu WL, Chen SY, Wang HP (2011) Method for manufacture of bacterial cellulose hydrogel cold pack. CN Patent No 201020239963.4
go back to reference Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611CrossRef Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611CrossRef
go back to reference Liyaskina E, Revin V, Paramonova E, Nazarkina M, Pestov N, Revina N, Kolesnikova S (2017) Nanomaterials from bacterial cellulose for antimicrobial wound dressing. J Phys Conf Ser 784:(1)CrossRef Liyaskina E, Revin V, Paramonova E, Nazarkina M, Pestov N, Revina N, Kolesnikova S (2017) Nanomaterials from bacterial cellulose for antimicrobial wound dressing. J Phys Conf Ser 784:(1)CrossRef
go back to reference Lu M, Li YY, Guan XH, Wei DZ (2010) Preparation of bacterial cellulose and its adsorption of Cd2+. J Northeast Univ 31(8):1196–1199 Lu M, Li YY, Guan XH, Wei DZ (2010) Preparation of bacterial cellulose and its adsorption of Cd2+. J Northeast Univ 31(8):1196–1199
go back to reference Lu M, Guan XH, Xu X, Wei D (2013) Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions. Chin Chem Lett 24:253–256CrossRef Lu M, Guan XH, Xu X, Wei D (2013) Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions. Chin Chem Lett 24:253–256CrossRef
go back to reference Lu M, Zhang YM, Guan XH, Xu X, Gao T (2014) Thermodynamics and kinetics of adsorption for heavy metal ions from aqueous solutions onto surface amino-bacterial cellulose. Trans Nonferrous Metals Soc China 24:1912–1917CrossRef Lu M, Zhang YM, Guan XH, Xu X, Gao T (2014) Thermodynamics and kinetics of adsorption for heavy metal ions from aqueous solutions onto surface amino-bacterial cellulose. Trans Nonferrous Metals Soc China 24:1912–1917CrossRef
go back to reference Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y, Wan Y (2017) Advanced nano- and bio-materials: a pharmaceutical approach bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17(2):249–254CrossRef Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y, Wan Y (2017) Advanced nano- and bio-materials: a pharmaceutical approach bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17(2):249–254CrossRef
go back to reference Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRef Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRef
go back to reference Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013) High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohydr Polym 98:1072–1082CrossRef Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013) High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohydr Polym 98:1072–1082CrossRef
go back to reference Mormino R, Bungay H (2003) Composites of bacterial cellulose and papermade with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506CrossRef Mormino R, Bungay H (2003) Composites of bacterial cellulose and papermade with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506CrossRef
go back to reference Muller D, Rambo CR, Recouvreux DOS, Porto LM (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111CrossRef Muller D, Rambo CR, Recouvreux DOS, Porto LM (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111CrossRef
go back to reference Muller D, Mandelli JS, Marins JA, Soares BG (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654CrossRef Muller D, Mandelli JS, Marins JA, Soares BG (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654CrossRef
go back to reference Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592CrossRef Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592CrossRef
go back to reference Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRef Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRef
go back to reference Naritomi T, Kouda T, Yano H, Yoshinaga F (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85(6):598–603CrossRef Naritomi T, Kouda T, Yano H, Yoshinaga F (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85(6):598–603CrossRef
go back to reference O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Biores Technol 99:6709–6724CrossRef O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Biores Technol 99:6709–6724CrossRef
go back to reference Pa’e N (2009) Rotary discs reactor for enhanced production microbial cellulose. Master thesis, Universiti Teknologi Malaysia, Skudai Pa’e N (2009) Rotary discs reactor for enhanced production microbial cellulose. Master thesis, Universiti Teknologi Malaysia, Skudai
go back to reference Pa’e N, Zahan KA, Muhamad II (2011) Production of biopolymer from acetobacter xylinum using different fermentation methods. Int J Eng Technol (IJET-IJEN) 11(5):90–98 Pa’e N, Zahan KA, Muhamad II (2011) Production of biopolymer from acetobacter xylinum using different fermentation methods. Int J Eng Technol (IJET-IJEN) 11(5):90–98
go back to reference Pa’e N, Zahan KA, Muhamada II, Kok FS (2013) Modified fermentation for production of bacterial cellulose/polyaniline as conductive biopolymer material. Jurnal Teknologi 62(2):21–23 Pa’e N, Zahan KA, Muhamada II, Kok FS (2013) Modified fermentation for production of bacterial cellulose/polyaniline as conductive biopolymer material. Jurnal Teknologi 62(2):21–23
go back to reference Park M, Cheng J, Choi J, Kim J, Hyun J (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids Surf B 102:238–242CrossRef Park M, Cheng J, Choi J, Kim J, Hyun J (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids Surf B 102:238–242CrossRef
go back to reference Pavaloiu RD, Stoica-Guzun A, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)–chitosan–bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124CrossRef Pavaloiu RD, Stoica-Guzun A, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)–chitosan–bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124CrossRef
go back to reference Paximada P, Dimitrakopoulou EA, Tsouko E, Koutinas AA, Fasseas C, Mandala IG (2016) Structural modification of bacterial cellulose fibrils under ultrasonic irradiation. Carbohydr Polym 150:5–12CrossRef Paximada P, Dimitrakopoulou EA, Tsouko E, Koutinas AA, Fasseas C, Mandala IG (2016) Structural modification of bacterial cellulose fibrils under ultrasonic irradiation. Carbohydr Polym 150:5–12CrossRef
go back to reference Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L (2013) Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr Polym 92:1752–1760CrossRef Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L (2013) Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr Polym 92:1752–1760CrossRef
go back to reference Piccinno F, Hischier R, Saba A, Mitrano D, Seeger S, Som C (2015) Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. J Clean Prod 112:1199–1210CrossRef Piccinno F, Hischier R, Saba A, Mitrano D, Seeger S, Som C (2015) Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. J Clean Prod 112:1199–1210CrossRef
go back to reference Pircher N, Veigel S, Aignea N, Nedelecc JM, Rosenau T, Liebner F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydr Polym 111:505–513CrossRef Pircher N, Veigel S, Aignea N, Nedelecc JM, Rosenau T, Liebner F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydr Polym 111:505–513CrossRef
go back to reference Ruka DR, Simon GP, Deana KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92:1717–1723CrossRef Ruka DR, Simon GP, Deana KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92:1717–1723CrossRef
go back to reference Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7(13):7373–7381CrossRef Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7(13):7373–7381CrossRef
go back to reference Saibuatong O, Phisalaphong M (2010) Novo aloe vera—bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460CrossRef Saibuatong O, Phisalaphong M (2010) Novo aloe vera—bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460CrossRef
go back to reference Salehudin MH, Salleh E, Muhamad II, Mamat SNH (2014) Starch-based biofilm reinforced with empty fruit bunch cellulose nanofibre. Mater Res Innovations 18:322–325CrossRef Salehudin MH, Salleh E, Muhamad II, Mamat SNH (2014) Starch-based biofilm reinforced with empty fruit bunch cellulose nanofibre. Mater Res Innovations 18:322–325CrossRef
go back to reference Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology 11:123–129 Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology 11:123–129
go back to reference Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760CrossRef Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760CrossRef
go back to reference Shah J, Brown RM Jr (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355CrossRef Shah J, Brown RM Jr (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355CrossRef
go back to reference Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598CrossRef Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598CrossRef
go back to reference Shanshan G, Jianqing W, Zhengwei J (2012) Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polym 87(2):1020–1025CrossRef Shanshan G, Jianqing W, Zhengwei J (2012) Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polym 87(2):1020–1025CrossRef
go back to reference Shirai A, Takahashi M, Kaneko H, Nishimura S, Ogawa M, Nishi N, Tokura S (1994) Biosynthesis of a novel polysaccharide by Acetobacter xylinum. Int J Biol Macromol 16(6):297–300CrossRef Shirai A, Takahashi M, Kaneko H, Nishimura S, Ogawa M, Nishi N, Tokura S (1994) Biosynthesis of a novel polysaccharide by Acetobacter xylinum. Int J Biol Macromol 16(6):297–300CrossRef
go back to reference Slavutsky MA, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulosenanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61CrossRef Slavutsky MA, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulosenanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61CrossRef
go back to reference Sokolnicki AM, Fisher RJ, Harrah TP, Kaplan DL (2006) Permeability of bacterial cellulose membranes. J Membr Sci 272(1–2):15–27CrossRef Sokolnicki AM, Fisher RJ, Harrah TP, Kaplan DL (2006) Permeability of bacterial cellulose membranes. J Membr Sci 272(1–2):15–27CrossRef
go back to reference Son HJ, Heo MS, Kim YG, Lee SJ (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol Appl Biochem 33(1):1–3CrossRef Son HJ, Heo MS, Kim YG, Lee SJ (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol Appl Biochem 33(1):1–3CrossRef
go back to reference Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Biores Technol 86(3):215–219CrossRef Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Biores Technol 86(3):215–219CrossRef
go back to reference Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131CrossRef Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131CrossRef
go back to reference Toru S, Kazunori T, Masaya K, Tetsuya M, Takaaki N, Shingeru M, Kenji K (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng 99(4):415–422CrossRef Toru S, Kazunori T, Masaya K, Tetsuya M, Takaaki N, Shingeru M, Kenji K (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng 99(4):415–422CrossRef
go back to reference Tsuchida T, Yoshinaga F (1997) Production of bacterial cellulose by agitation culture system. J Pure Appl Chem 69(11):2453–2458CrossRef Tsuchida T, Yoshinaga F (1997) Production of bacterial cellulose by agitation culture system. J Pure Appl Chem 69(11):2453–2458CrossRef
go back to reference Tyagi N, Suresh S (2015) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80CrossRef Tyagi N, Suresh S (2015) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80CrossRef
go back to reference Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89(4):1189–1197CrossRef Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89(4):1189–1197CrossRef
go back to reference Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97CrossRef Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97CrossRef
go back to reference Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59:93–99CrossRef Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59:93–99CrossRef
go back to reference Wang J, Lu X, Ng PF, Lee K, Fei B, Xin JH, Wu J (2015) Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. J Colloid Interface Sci 440:32–38CrossRef Wang J, Lu X, Ng PF, Lee K, Fei B, Xin JH, Wu J (2015) Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. J Colloid Interface Sci 440:32–38CrossRef
go back to reference Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200CrossRef Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200CrossRef
go back to reference Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Preparation and characterization on mechanical and antibacterial properties of chitosan/cellulose blends. Carbohydr Polym 57(4):435–440CrossRef Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Preparation and characterization on mechanical and antibacterial properties of chitosan/cellulose blends. Carbohydr Polym 57(4):435–440CrossRef
go back to reference Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771CrossRef Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771CrossRef
go back to reference Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145CrossRef Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145CrossRef
go back to reference Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74:659–665CrossRef Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74:659–665CrossRef
go back to reference Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845CrossRef Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845CrossRef
go back to reference Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284CrossRef Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284CrossRef
go back to reference Zahan KA, Pa’e N, Muhamad II (2014) Process parameter for fermentation in rotary discs reactor for optimum microbial cellulose production using response surface methodology. Bioresources 9(2):1858–1872 Zahan KA, Pa’e N, Muhamad II (2014) Process parameter for fermentation in rotary discs reactor for optimum microbial cellulose production using response surface methodology. Bioresources 9(2):1858–1872
go back to reference Zhang Z, Zhang J, Zhao X, Yang F (2015) Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries. Carbon 95:552–559CrossRef Zhang Z, Zhang J, Zhao X, Yang F (2015) Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries. Carbon 95:552–559CrossRef
go back to reference Zhang F, Tang Y, Yang Y, Zhang X, Lee CS (2016) In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochim Acta 211:404–410CrossRef Zhang F, Tang Y, Yang Y, Zhang X, Lee CS (2016) In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochim Acta 211:404–410CrossRef
go back to reference Zhou T, Chen D, Jiu J, Nge TT (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Express Polym Lett 7:756–766CrossRef Zhou T, Chen D, Jiu J, Nge TT (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Express Polym Lett 7:756–766CrossRef
go back to reference Zhu H, Jia S, Wan T, Jia Y, Yang H, Li J, Yan L, Zhong C (2011) Biosynthesis of spherical Fe3O4/Bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr Polym 86:1558–1564CrossRef Zhu H, Jia S, Wan T, Jia Y, Yang H, Li J, Yan L, Zhong C (2011) Biosynthesis of spherical Fe3O4/Bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr Polym 86:1558–1564CrossRef
Metadata
Title
Bacterial Cellulose Nanocomposites
Authors
N. Pa’e
I. I. Muhamad
Z. Hashim
A. H. M. Yusof
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05825-8_5

Premium Partners