Skip to main content
Top
Published in:

12-08-2022

Bad and Good News for Strassen’s Laser Method: Border Rank of \(\mathrm{Perm}_3\) and Strict Submultiplicativity

Authors: Austin Conner, Hang Huang, J. M. Landsberg

Published in: Foundations of Computational Mathematics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We determine the border ranks of tensors that could potentially advance the known upper bound for the exponent \(\omega \) of matrix multiplication. The Kronecker square of the small \(q=2\) Coppersmith–Winograd tensor equals the \(3\times 3\) permanent, and could potentially be used to show \(\omega =2\). We prove the negative result for complexity theory that its border rank is 16, resolving a longstanding problem. Regarding its \(q=4\) skew cousin in \({\mathbb {C}}^5{\mathord { \otimes } }{\mathbb {C}}^5{\mathord { \otimes } }{\mathbb {C}}^5\), which could potentially be used to prove \(\le 2.11\), we show the border rank of its Kronecker square is at most 42, a remarkable sub-multiplicativity result, as the square of its border rank is 64. We also determine moduli spaces VSP for the small Coppersmith–Winograd tensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Alman and V. Vassilevska Williams, Limits on All Known (and Some Unknown) Approaches to Matrix Multiplication, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (2018). J. Alman and V. Vassilevska Williams, Limits on All Known (and Some Unknown) Approaches to Matrix Multiplication, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (2018).
2.
go back to reference Josh Alman, Limits on the universal method for matrix multiplication, 34th Computational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 137, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019, pp. Art. No. 12, 24. Josh Alman, Limits on the universal method for matrix multiplication, 34th Computational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 137, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019, pp. Art. No. 12, 24.
3.
go back to reference Josh Alman and Virginia Vassilevska Williams, A refined laser method and faster matrix multiplication, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), [Society for Industrial and Applied Mathematics (SIAM)], Philadelphia, PA, 2021, pp. 522–539. Josh Alman and Virginia Vassilevska Williams, A refined laser method and faster matrix multiplication, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), [Society for Industrial and Applied Mathematics (SIAM)], Philadelphia, PA, 2021, pp. 522–539.
4.
go back to reference Josh Alman and Virginia Vassilevska Williams, Further limitations of the known approaches for matrix multiplication, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, 2018, pp. 25:1–25:15. Josh Alman and Virginia Vassilevska Williams, Further limitations of the known approaches for matrix multiplication, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, 2018, pp. 25:1–25:15.
5.
go back to reference Andris Ambainis, Yuval Filmus, and François Le Gall, Fast matrix multiplication: limitations of the Coppersmith-Winograd method (extended abstract), STOC’15—Proceedings of the 2015 ACM Symposium on Theory of Computing, ACM, New York, 2015, pp. 585–593. Andris Ambainis, Yuval Filmus, and François Le Gall, Fast matrix multiplication: limitations of the Coppersmith-Winograd method (extended abstract), STOC’15—Proceedings of the 2015 ACM Symposium on Theory of Computing, ACM, New York, 2015, pp. 585–593.
6.
go back to reference Dario Bini, Grazia Lotti, and Francesco Romani, Approximate solutions for the bilinear form computational problem, SIAM J. Comput. 9 (1980), no. 4, 692–697.MathSciNetCrossRefMATH Dario Bini, Grazia Lotti, and Francesco Romani, Approximate solutions for the bilinear form computational problem, SIAM J. Comput. 9 (1980), no. 4, 692–697.MathSciNetCrossRefMATH
7.
go back to reference Markus Bläser, Fast matrix multiplication, Graduate Surveys, no. 5, Theory of Computing Library, 2013. Markus Bläser, Fast matrix multiplication, Graduate Surveys, no. 5, Theory of Computing Library, 2013.
8.
go back to reference Markus Bläser and Vladimir Lysikov, On degeneration of tensors and algebras, 41st International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 58, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016, pp. Art. No. 19, 11. Markus Bläser and Vladimir Lysikov, On degeneration of tensors and algebras, 41st International Symposium on Mathematical Foundations of Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 58, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016, pp. Art. No. 19, 11.
9.
go back to reference Jerome Brachat, Pierre Comon, Bernard Mourrain, and Elias Tsigaridas, Symmetric tensor decomposition, Linear Algebra Appl. 433 (2010), no. 11-12, 1851–1872.MathSciNetCrossRefMATH Jerome Brachat, Pierre Comon, Bernard Mourrain, and Elias Tsigaridas, Symmetric tensor decomposition, Linear Algebra Appl. 433 (2010), no. 11-12, 1851–1872.MathSciNetCrossRefMATH
10.
go back to reference Weronika Buczyńska and Jarosław Buczyński, Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geom. 23 (2014), no. 1, 63–90.MathSciNetCrossRefMATH Weronika Buczyńska and Jarosław Buczyński, Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geom. 23 (2014), no. 1, 63–90.MathSciNetCrossRefMATH
11.
go back to reference Weronika Buczyńska and Jarosław Buczyński, Apolarity, border rank, and multigraded Hilbert scheme, Duke Math. J. 170 (2021), no. 16, 3659–3702.MathSciNetCrossRefMATH Weronika Buczyńska and Jarosław Buczyński, Apolarity, border rank, and multigraded Hilbert scheme, Duke Math. J. 170 (2021), no. 16, 3659–3702.MathSciNetCrossRefMATH
12.
go back to reference Jarosław Buczyński and J. M. Landsberg, On the third secant variety, J. Algebraic Combin. 40 (2014), no. 2, 475–502. Jarosław Buczyński and J. M. Landsberg, On the third secant variety, J. Algebraic Combin. 40 (2014), no. 2, 475–502.
13.
go back to reference Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, Algebraic complexity theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997, With the collaboration of Thomas Lickteig. Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, Algebraic complexity theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997, With the collaboration of Thomas Lickteig.
14.
go back to reference Luca Chiantini, Jonathan D. Hauenstein, Christian Ikenmeyer, Joseph M. Landsberg, and Giorgio Ottaviani, Polynomials and the exponent of matrix multiplication, Bull. Lond. Math. Soc. 50 (2018), no. 3, 369–389.MathSciNetCrossRefMATH Luca Chiantini, Jonathan D. Hauenstein, Christian Ikenmeyer, Joseph M. Landsberg, and Giorgio Ottaviani, Polynomials and the exponent of matrix multiplication, Bull. Lond. Math. Soc. 50 (2018), no. 3, 369–389.MathSciNetCrossRefMATH
15.
go back to reference Matthias Christandl, Fulvio Gesmundo, and Asger Kjærulff Jensen, Border rank is not multiplicative under the tensor product, SIAM J. Appl. Algebra Geom. 3 (2019), no. 2, 231–255. Matthias Christandl, Fulvio Gesmundo, and Asger Kjærulff Jensen, Border rank is not multiplicative under the tensor product, SIAM J. Appl. Algebra Geom. 3 (2019), no. 2, 231–255.
16.
go back to reference Matthias Christandl, Péter Vrana, and Jeroen Zuiddam, Barriers for fast matrix multiplication from irreversibility, 34th Computational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 137, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019, pp. Art. No. 26, 17. Matthias Christandl, Péter Vrana, and Jeroen Zuiddam, Barriers for fast matrix multiplication from irreversibility, 34th Computational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 137, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019, pp. Art. No. 26, 17.
18.
go back to reference Austin Conner, Fulvio Gesmundo, Joseph M. Landsberg, and Emanuele Ventura, Tensors with maximal symmetries, arXiv e-prints (2019), arXiv:1909.09518. Austin Conner, Fulvio Gesmundo, Joseph M. Landsberg, and Emanuele Ventura, Tensors with maximal symmetries, arXiv e-prints (2019), arXiv:​1909.​09518.
19.
go back to reference Austin Conner, Fulvio Gesmundo, Joseph M. Landsberg, and Emanuele Ventura, Rank and border rank of Kronecker powers of tensors and Strassen’s laser method, Comput. Complexity 31 (2022), no. 1, Paper No. 1, 40. Austin Conner, Fulvio Gesmundo, Joseph M. Landsberg, and Emanuele Ventura, Rank and border rank of Kronecker powers of tensors and Strassen’s laser method, Comput. Complexity 31 (2022), no. 1, Paper No. 1, 40.
20.
go back to reference Austin Conner, Alicia Harper, and J.M. Landsberg, New lower bounds for matrix mulitplication and\(\operatorname{det}_3\), arXiv:1911.07981. Austin Conner, Alicia Harper, and J.M. Landsberg, New lower bounds for matrix mulitplication and\(\operatorname{det}_3\), arXiv:​1911.​07981.
21.
go back to reference D. Coppersmith and S. Winograd, On the asymptotic complexity of matrix multiplication, SIAM J. Comput. 11 (1982), no. 3, 472–492.MathSciNetCrossRefMATH D. Coppersmith and S. Winograd, On the asymptotic complexity of matrix multiplication, SIAM J. Comput. 11 (1982), no. 3, 472–492.MathSciNetCrossRefMATH
22.
go back to reference Don Coppersmith and Shmuel Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9 (1990), no. 3, 251–280.MathSciNetCrossRefMATH Don Coppersmith and Shmuel Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9 (1990), no. 3, 251–280.MathSciNetCrossRefMATH
23.
go back to reference Harm Derksen, On the nuclear norm and the singular value decomposition of tensors, Found. Comput. Math. 16 (2016), no. 3, 779–811.MathSciNetCrossRefMATH Harm Derksen, On the nuclear norm and the singular value decomposition of tensors, Found. Comput. Math. 16 (2016), no. 3, 779–811.MathSciNetCrossRefMATH
24.
go back to reference Klim Efremenko, Ankit Garg, Rafael Oliveira, and Avi Wigderson, Barriers for rank methods in arithmetic complexity, 9th Innovations in Theoretical Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 94, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, pp. Art. No. 1, 19. Klim Efremenko, Ankit Garg, Rafael Oliveira, and Avi Wigderson, Barriers for rank methods in arithmetic complexity, 9th Innovations in Theoretical Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 94, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, pp. Art. No. 1, 19.
27.
go back to reference Nathan Ilten and Zach Teitler, Product ranks of the\(3\times 3\)determinant and permanent, Canad. Math. Bull. 59 (2016), no. 2, 311–319.MathSciNetCrossRefMATH Nathan Ilten and Zach Teitler, Product ranks of the\(3\times 3\)determinant and permanent, Canad. Math. Bull. 59 (2016), no. 2, 311–319.MathSciNetCrossRefMATH
28.
go back to reference Thomas A. Ivey and Joseph M. Landsberg, Cartan for beginners, Graduate Studies in Mathematics, vol. 175, American Mathematical Society, Providence, RI, 2016, Differential geometry via moving frames and exterior differential systems, Second edition [of MR2003610]. Thomas A. Ivey and Joseph M. Landsberg, Cartan for beginners, Graduate Studies in Mathematics, vol. 175, American Mathematical Society, Providence, RI, 2016, Differential geometry via moving frames and exterior differential systems, Second edition [of MR2003610].
29.
go back to reference J. M. Landsberg, The border rank of the multiplication of\(2\times 2\)matrices is seven, J. Amer. Math. Soc. 19 (2006), no. 2, 447–459.MathSciNetCrossRefMATH J. M. Landsberg, The border rank of the multiplication of\(2\times 2\)matrices is seven, J. Amer. Math. Soc. 19 (2006), no. 2, 447–459.MathSciNetCrossRefMATH
30.
go back to reference J. M. Landsberg, Geometry and complexity theory, Cambridge Studies in Advanced Mathematics, vol. 169, Cambridge University Press, Cambridge, 2017.CrossRef J. M. Landsberg, Geometry and complexity theory, Cambridge Studies in Advanced Mathematics, vol. 169, Cambridge University Press, Cambridge, 2017.CrossRef
31.
go back to reference J. M. Landsberg and Mateusz Michałek, Abelian tensors, J. Math. Pures Appl. (9) 108 (2017), no. 3, 333–371. J. M. Landsberg and Mateusz Michałek, Abelian tensors, J. Math. Pures Appl. (9) 108 (2017), no. 3, 333–371.
32.
go back to reference J. M. Landsberg and Mateusz Michałek, On the geometry of border rank decompositions for matrix multiplication and other tensors with symmetry, SIAM J. Appl. Algebra Geom. 1 (2017), no. 1, 2–19. J. M. Landsberg and Mateusz Michałek, On the geometry of border rank decompositions for matrix multiplication and other tensors with symmetry, SIAM J. Appl. Algebra Geom. 1 (2017), no. 1, 2–19.
33.
go back to reference J. M. Landsberg and Giorgio Ottaviani, Equations for secant varieties of Veronese and other varieties, Ann. Mat. Pura Appl. (4) 192 (2013), no. 4, 569–606. J. M. Landsberg and Giorgio Ottaviani, Equations for secant varieties of Veronese and other varieties, Ann. Mat. Pura Appl. (4) 192 (2013), no. 4, 569–606.
34.
go back to reference Joseph M. Landsberg and Mateusz Michałek, A\(2n^2-\log _2(n)-1\)lower bound for the border rank of matrix multiplication, Int. Math. Res. Not. IMRN (2018), no. 15, 4722–4733. Joseph M. Landsberg and Mateusz Michałek, A\(2n^2-\log _2(n)-1\)lower bound for the border rank of matrix multiplication, Int. Math. Res. Not. IMRN (2018), no. 15, 4722–4733.
35.
go back to reference Joseph M. Landsberg and Giorgio Ottaviani, New lower bounds for the border rank of matrix multiplication, Theory Comput. 11 (2015), 285–298. Joseph M. Landsberg and Giorgio Ottaviani, New lower bounds for the border rank of matrix multiplication, Theory Comput. 11 (2015), 285–298.
36.
go back to reference François Le Gall, Powers of tensors and fast matrix multiplication, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (New York, NY, USA), ISSAC ’14, ACM, 2014, pp. 296–303. François Le Gall, Powers of tensors and fast matrix multiplication, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (New York, NY, USA), ISSAC ’14, ACM, 2014, pp. 296–303.
37.
go back to reference Kenneth Levenberg, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math. 2 (1944), 164–168.MathSciNetCrossRefMATH Kenneth Levenberg, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math. 2 (1944), 164–168.MathSciNetCrossRefMATH
39.
go back to reference Donald W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math. 11 (1963), 431–441.MathSciNetCrossRef Donald W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math. 11 (1963), 431–441.MathSciNetCrossRef
40.
go back to reference Victor Pan, How to multiply matrices faster, Lecture Notes in Computer Science, vol. 179, Springer-Verlag, Berlin, 1984. Victor Pan, How to multiply matrices faster, Lecture Notes in Computer Science, vol. 179, Springer-Verlag, Berlin, 1984.
41.
go back to reference Kristian Ranestad and Frank-Olaf Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147–181. (2001m:14009) Kristian Ranestad and Frank-Olaf Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147–181. (2001m:14009)
43.
go back to reference Alexandre Sedoglavic and Alexey V. Smirnov, The tensor rank of\(5\times 5\)matrices multiplication is bounded by 98 and its border rank by 89, ISSAC ’21—Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation, ACM, New York, [2021] \(\copyright \) 2021, pp. 345–351. Alexandre Sedoglavic and Alexey V. Smirnov, The tensor rank of\(5\times 5\)matrices multiplication is bounded by 98 and its border rank by 89, ISSAC ’21—Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation, ACM, New York, [2021] \(\copyright \) 2021, pp. 345–351.
45.
46.
go back to reference A. V. Smirnov, The bilinear complexity and practical algorithms for matrix multiplication, Comput. Math. Math. Phys. 53 (2013), no. 12, 1781–1795.MathSciNetCrossRef A. V. Smirnov, The bilinear complexity and practical algorithms for matrix multiplication, Comput. Math. Math. Phys. 53 (2013), no. 12, 1781–1795.MathSciNetCrossRef
47.
go back to reference A. V. Smirnov, The Approximate Bilinear Algorithm of Length 46 for Multiplication of 4 x 4 Matrices, ArXiv e-prints (2014). A. V. Smirnov, The Approximate Bilinear Algorithm of Length 46 for Multiplication of 4 x 4 Matrices, ArXiv e-prints (2014).
48.
go back to reference A. Stothers, On the complexity of matrix multiplication, PhD thesis, University of Edinburgh, 2010. A. Stothers, On the complexity of matrix multiplication, PhD thesis, University of Edinburgh, 2010.
50.
go back to reference V. Strassen, Relative bilinear complexity and matrix multiplication, J. Reine Angew. Math. 375/376 (1987), 406–443. (88h:11026) V. Strassen, Relative bilinear complexity and matrix multiplication, J. Reine Angew. Math. 375/376 (1987), 406–443. (88h:11026)
51.
go back to reference V. Strassen, Algebra and complexity, First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 429–446. V. Strassen, Algebra and complexity, First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 429–446.
53.
go back to reference Toshio Sumi, Mitsuhiro Miyazaki, and Toshio Sakata, About the maximal rank of 3-tensors over the real and the complex number field, Ann. Inst. Statist. Math. 62 (2010), no. 4, 807–822.MathSciNetCrossRefMATH Toshio Sumi, Mitsuhiro Miyazaki, and Toshio Sakata, About the maximal rank of 3-tensors over the real and the complex number field, Ann. Inst. Statist. Math. 62 (2010), no. 4, 807–822.MathSciNetCrossRefMATH
55.
go back to reference Virginia Williams, Breaking the coppersimith-winograd barrier, preprint. Virginia Williams, Breaking the coppersimith-winograd barrier, preprint.
Metadata
Title
Bad and Good News for Strassen’s Laser Method: Border Rank of and Strict Submultiplicativity
Authors
Austin Conner
Hang Huang
J. M. Landsberg
Publication date
12-08-2022
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 6/2023
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-022-09579-3

Premium Partner