Skip to main content
Top
Published in: Wireless Networks 6/2019

27-03-2018

Balancing energy efficiency and spectrum efficiency for lower error rate in bidirectional relay networks

Authors: Muhammad I. Khalil, Stevan M. Berber, Kevin W. Sowerby

Published in: Wireless Networks | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A scheme for combining data rate, energy efficiency and relay location in bidirectional amplify-and-forward relay networks is proposed in this paper. The proposed scheme allows the energy consumption to be evaluated for all positions of a chosen relay along a line between the transmitter and the destination. Furthermore, the evaluated energy reduction is used to obtain the optimal balance between the energy efficiency (EE) and spectrum efficiency (SE). This balance enables the EE to increase significantly with the least loss of SE. Such a balance is then expressed with respect to the bit error rate. Numerical examples are provided to validate the analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Host-Madsen, A., & Zhang, J. (2005). Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory, 51(6), 2020–2040.MathSciNetMATHCrossRef Host-Madsen, A., & Zhang, J. (2005). Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory, 51(6), 2020–2040.MathSciNetMATHCrossRef
2.
go back to reference Proakis, J., & Salehi, M. (2007). Digital Communications. New York: McGraw-Hill Education. Proakis, J., & Salehi, M. (2007). Digital Communications. New York: McGraw-Hill Education.
3.
go back to reference Wong, W., Steele, R., Glance, B., & Horn, D. (1983). Time diversity with adaptive error detection to combat Rayleigh fading in digital mobile radio. IEEE Transactions on Communications, 31(3), 378–387.CrossRef Wong, W., Steele, R., Glance, B., & Horn, D. (1983). Time diversity with adaptive error detection to combat Rayleigh fading in digital mobile radio. IEEE Transactions on Communications, 31(3), 378–387.CrossRef
4.
go back to reference Lagunas, M. A., Neira, A. I. P., Amin, M. G., & Vidal, J. (2000). Spatial processing for frequency diversity schemes. IEEE Transactions on Signal Processing, 48(2), 353–362.CrossRef Lagunas, M. A., Neira, A. I. P., Amin, M. G., & Vidal, J. (2000). Spatial processing for frequency diversity schemes. IEEE Transactions on Signal Processing, 48(2), 353–362.CrossRef
5.
go back to reference Diggavi, S. N., Al-Dhahir, N., Stamoulis, A., & Calderbank, A. R. (2004). Great expectations: The value of spatial diversity in wireless networks. Proceedings of the IEEE, 92(2), 219–270.CrossRef Diggavi, S. N., Al-Dhahir, N., Stamoulis, A., & Calderbank, A. R. (2004). Great expectations: The value of spatial diversity in wireless networks. Proceedings of the IEEE, 92(2), 219–270.CrossRef
6.
go back to reference Kwok, Y.-K. R., & Lau, V. K. N. (2007). Diversity Techniques (pp. 87–107). Hoboken: Wiley-IEEE Press. Kwok, Y.-K. R., & Lau, V. K. N. (2007). Diversity Techniques (pp. 87–107). Hoboken: Wiley-IEEE Press.
7.
go back to reference Elsheikh, E., Wong, K.-K., Zhang, Y., & Cui, T. (2010). Chapter 10—User cooperative communications. In A. M. W. N. T. Hou (Ed.), Cognitive Radio Communications and Networks (pp. 261–305). Oxford: Academic Press.CrossRef Elsheikh, E., Wong, K.-K., Zhang, Y., & Cui, T. (2010). Chapter 10—User cooperative communications. In A. M. W. N. T. Hou (Ed.), Cognitive Radio Communications and Networks (pp. 261–305). Oxford: Academic Press.CrossRef
8.
go back to reference Dohler, M., & Li, Y. (2010). Transparent relaying techniques. In Cooperative Communications (pp. 141–207). Wiley. Dohler, M., & Li, Y. (2010). Transparent relaying techniques. In Cooperative Communications (pp. 141–207). Wiley.
9.
go back to reference Hasna, M., & Alouini, M.-S. (2003). Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters, 7(5), 216–218.CrossRef Hasna, M., & Alouini, M.-S. (2003). Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters, 7(5), 216–218.CrossRef
10.
go back to reference Wang, Z., & Giannakis, G. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.CrossRef Wang, Z., & Giannakis, G. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.CrossRef
11.
go back to reference Hasna, M., & Alouini, M.-S. (2004). Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Transactions on Communications, 52(1), 130–135.CrossRef Hasna, M., & Alouini, M.-S. (2004). Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Transactions on Communications, 52(1), 130–135.CrossRef
12.
go back to reference Nguyen, H., Nguyen, H., & Le-Ngoc, T. (2011). Diversity analysis of relay selection schemes for two-way wireless relay networks. Wireless Personal Communications, 59(2), 173–189.CrossRef Nguyen, H., Nguyen, H., & Le-Ngoc, T. (2011). Diversity analysis of relay selection schemes for two-way wireless relay networks. Wireless Personal Communications, 59(2), 173–189.CrossRef
13.
go back to reference Yao, Y., Cai, X., & Giannakis, G. B. (2005). On energy efficiency and optimum resource allocation of relay transmissions in the low-power regime. IEEE Transactions on Wireless Communications, 4(6), 2917–2927.CrossRef Yao, Y., Cai, X., & Giannakis, G. B. (2005). On energy efficiency and optimum resource allocation of relay transmissions in the low-power regime. IEEE Transactions on Wireless Communications, 4(6), 2917–2927.CrossRef
14.
go back to reference Madan, R., Mehta, N. B., Molisch, A. F., & Zhang, J. (2008). Energy-efficient cooperative relaying over fading channels with simple relay selection. IEEE Transactions on Wireless Communications, 7(8), 3013–3025.CrossRef Madan, R., Mehta, N. B., Molisch, A. F., & Zhang, J. (2008). Energy-efficient cooperative relaying over fading channels with simple relay selection. IEEE Transactions on Wireless Communications, 7(8), 3013–3025.CrossRef
15.
go back to reference Bae, C., & Stark, W. (2009). End-to-end energy bandwidth tradeoff in multihop wireless networks. IEEE Transactions on Information Theory, 55(9), 4051–4066.MathSciNetMATHCrossRef Bae, C., & Stark, W. (2009). End-to-end energy bandwidth tradeoff in multihop wireless networks. IEEE Transactions on Information Theory, 55(9), 4051–4066.MathSciNetMATHCrossRef
16.
go back to reference Chen, C. L., Stark, W. E., & Chen, S. G. (2011). Energy-bandwidth efficiency tradeoff in mimo multi-hop wireless networks. IEEE Journal on Selected Areas in Communications, 29(8), 1537–1546.CrossRef Chen, C. L., Stark, W. E., & Chen, S. G. (2011). Energy-bandwidth efficiency tradeoff in mimo multi-hop wireless networks. IEEE Journal on Selected Areas in Communications, 29(8), 1537–1546.CrossRef
17.
go back to reference Popovski, P., & Yomo, H. (2006). Bi-directional amplification of throughput in a wireless multi-hop network. In Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd (Vol. 2, pp. 588–593). Popovski, P., & Yomo, H. (2006). Bi-directional amplification of throughput in a wireless multi-hop network. In Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd (Vol. 2, pp. 588–593).
18.
go back to reference Chen, H., Li, G., & Cai, J. (2015). Spectralenergy efficiency tradeoff in full-duplex two-way relay networks. IEEE Systems Journal, PP(99), 1–10.CrossRef Chen, H., Li, G., & Cai, J. (2015). Spectralenergy efficiency tradeoff in full-duplex two-way relay networks. IEEE Systems Journal, PP(99), 1–10.CrossRef
19.
go back to reference Chen, Y., Zhang, S., Xu, S., & Li, G. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.CrossRef Chen, Y., Zhang, S., Xu, S., & Li, G. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.CrossRef
21.
go back to reference Miao, G., Himayat, N., & Li, G. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications, 58(2), 545–554.CrossRef Miao, G., Himayat, N., & Li, G. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications, 58(2), 545–554.CrossRef
22.
go back to reference Xiong, C., Li, G., Zhang, S., Chen, Y., & Xu, S. (2011). Energy- and spectral-efficiency tradeoff in downlink OFDMA networks. IEEE Transactions on Wireless Communications, 10(11), 3874–3886.CrossRef Xiong, C., Li, G., Zhang, S., Chen, Y., & Xu, S. (2011). Energy- and spectral-efficiency tradeoff in downlink OFDMA networks. IEEE Transactions on Wireless Communications, 10(11), 3874–3886.CrossRef
23.
go back to reference Huang, R., Feng, C., Zhang, T., & Wang, W. (2011). Energy-efficient relay selection and power allocation scheme in af relay networks with bidirectional asymmetric traffic. In 2011 14th International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 1–5). Huang, R., Feng, C., Zhang, T., & Wang, W. (2011). Energy-efficient relay selection and power allocation scheme in af relay networks with bidirectional asymmetric traffic. In 2011 14th International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 1–5).
25.
go back to reference Sun, C., Cen, Y., & Yang, C. (2013). Energy efficient OFDM relay systems. IEEE Transactions on Communications, 61(5), 1797–1809.CrossRef Sun, C., Cen, Y., & Yang, C. (2013). Energy efficient OFDM relay systems. IEEE Transactions on Communications, 61(5), 1797–1809.CrossRef
26.
go back to reference Amin, O., Bavarian, S., & Lampe, L. (2012). Cooperative techniques for energy-efficient wireless communications. In E. Hossain, V. K. Bhargava, & G. P. Fettweis (Eds.), Green Radio Communication Networks (pp. 125–149). Cambridge: Cambridge University Press. (Cambridge books online).CrossRef Amin, O., Bavarian, S., & Lampe, L. (2012). Cooperative techniques for energy-efficient wireless communications. In E. Hossain, V. K. Bhargava, & G. P. Fettweis (Eds.), Green Radio Communication Networks (pp. 125–149). Cambridge: Cambridge University Press. (Cambridge books online).CrossRef
27.
go back to reference Wei, L., Hu, R., Qian, Y., & Wu, G. (2016). Energy efficiency and spectrum efficiency of multihop device-to-device communications underlaying cellular networks. IEEE Transactions on Vehicular Technology, 65(1), 367–380.CrossRef Wei, L., Hu, R., Qian, Y., & Wu, G. (2016). Energy efficiency and spectrum efficiency of multihop device-to-device communications underlaying cellular networks. IEEE Transactions on Vehicular Technology, 65(1), 367–380.CrossRef
28.
go back to reference Fang, Z., Liang, F., Li, L., & Jin, L. (2014). Performance analysis and power allocation for two-way amplify-and-forward relaying with generalized differential modulation. IEEE Transactions on Vehicular Technology, 63(2), 937–942.CrossRef Fang, Z., Liang, F., Li, L., & Jin, L. (2014). Performance analysis and power allocation for two-way amplify-and-forward relaying with generalized differential modulation. IEEE Transactions on Vehicular Technology, 63(2), 937–942.CrossRef
29.
go back to reference Song, K., Ji, B., Huang, Y., Xiao, M., & Yang, L. (2015). Performance analysis of antenna selection in two-way relay networks. IEEE Transactions on Signal Processing, 63(10), 2520–2532.MathSciNetMATHCrossRef Song, K., Ji, B., Huang, Y., Xiao, M., & Yang, L. (2015). Performance analysis of antenna selection in two-way relay networks. IEEE Transactions on Signal Processing, 63(10), 2520–2532.MathSciNetMATHCrossRef
30.
go back to reference Yang, L., Qaraqe, K., Serpedin, E., & Gao, X. (2015). Performance analysis of two-way relaying networks with the n th worst relay selection over various fading channels. IEEE Transactions on Vehicular Technology, 64(7), 3321–3327. Yang, L., Qaraqe, K., Serpedin, E., & Gao, X. (2015). Performance analysis of two-way relaying networks with the n th worst relay selection over various fading channels. IEEE Transactions on Vehicular Technology, 64(7), 3321–3327.
31.
go back to reference Luo, M., Villemaud, G., Gorce, J. M., & Zhang, J. (2012). Realistic prediction of BER and AMC for indoor wireless transmissions. IEEE Antennas and Wireless Propagation Letters, 11, 1084–1087.CrossRef Luo, M., Villemaud, G., Gorce, J. M., & Zhang, J. (2012). Realistic prediction of BER and AMC for indoor wireless transmissions. IEEE Antennas and Wireless Propagation Letters, 11, 1084–1087.CrossRef
32.
go back to reference Khalil, M., Berber, S., & Sowerby, K. (2017). High SNR approximation for performance analysis of two-way multiple relay networks. Physical Communication, 24(Supplement C), 62–70.CrossRef Khalil, M., Berber, S., & Sowerby, K. (2017). High SNR approximation for performance analysis of two-way multiple relay networks. Physical Communication, 24(Supplement C), 62–70.CrossRef
33.
go back to reference Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half-duplex fading relay channels. IEEE Journal on Selected Areas in Communications, 25(2), 379–389.CrossRef Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half-duplex fading relay channels. IEEE Journal on Selected Areas in Communications, 25(2), 379–389.CrossRef
34.
go back to reference Rao, B. (2009). A First Course in Probability and Statistics. Singapore: World Scientific.MATH Rao, B. (2009). A First Course in Probability and Statistics. Singapore: World Scientific.MATH
35.
go back to reference Khalil, M. I., Berber, S. M., & Sowerby, K. W. (2016). Energy efficiency and spectrum efficiency trade-off over optimal relay location in bidirectional relay networks. In 2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (pp. 298–302). Khalil, M. I., Berber, S. M., & Sowerby, K. W. (2016). Energy efficiency and spectrum efficiency trade-off over optimal relay location in bidirectional relay networks. In 2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (pp. 298–302).
36.
go back to reference de Chaves, F., Cavalcanti, F., de Oliveira Neto, R., & Santos, R. (2009). Power control for wireless networks: Conventional and QoS-flexible approaches. In F. R. P. Cavalcanti & S. Andersson (Eds.), Optimizing Wireless Communication Systems (pp. 3–49). New York: Springer.CrossRef de Chaves, F., Cavalcanti, F., de Oliveira Neto, R., & Santos, R. (2009). Power control for wireless networks: Conventional and QoS-flexible approaches. In F. R. P. Cavalcanti & S. Andersson (Eds.), Optimizing Wireless Communication Systems (pp. 3–49). New York: Springer.CrossRef
37.
go back to reference Ahmed, E., & Eltawil, A. (2015). All-digital self-interference cancellation technique for full-duplex systems. IEEE Transactions on Wireless Communications, 14(7), 3519–3532.CrossRef Ahmed, E., & Eltawil, A. (2015). All-digital self-interference cancellation technique for full-duplex systems. IEEE Transactions on Wireless Communications, 14(7), 3519–3532.CrossRef
38.
go back to reference Hasna, M., & Alouini, M.-S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131.CrossRef Hasna, M., & Alouini, M.-S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131.CrossRef
39.
go back to reference Louie, R. H., Li, Y., Suraweera, H., & Vucetic, B. (2009). Performance analysis of beamforming in two hop amplify and forward relay networks with antenna correlation. IEEE Transactions on Wireless Communications, 8(6), 3132–3141.CrossRef Louie, R. H., Li, Y., Suraweera, H., & Vucetic, B. (2009). Performance analysis of beamforming in two hop amplify and forward relay networks with antenna correlation. IEEE Transactions on Wireless Communications, 8(6), 3132–3141.CrossRef
40.
go back to reference Khalil, M. I., Berber, S. M., & Sowerby, K. W. (2017). Precise error rate analysis of wireless relay networks. Wireless Personal Communications, 95(4), 5081–5096.CrossRef Khalil, M. I., Berber, S. M., & Sowerby, K. W. (2017). Precise error rate analysis of wireless relay networks. Wireless Personal Communications, 95(4), 5081–5096.CrossRef
Metadata
Title
Balancing energy efficiency and spectrum efficiency for lower error rate in bidirectional relay networks
Authors
Muhammad I. Khalil
Stevan M. Berber
Kevin W. Sowerby
Publication date
27-03-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1716-1

Other articles of this Issue 6/2019

Wireless Networks 6/2019 Go to the issue