Skip to main content
Top

2024 | OriginalPaper | Chapter

12. Ball Milling of Copper and Zinc Alloys Followed by Their Consolidation and Application

Authors : Krutika L. Routray, Sunirmal Saha

Published in: Mechanically Alloyed Novel Materials

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ball milling is a mechanical process that involves the grinding of solid materials into small, fine particles using balls as the grinding medium. In the context of copper and zinc alloys, this process can be used to prepare fine powders of these metals or their alloys, which can then be consolidated into various forms for different applications. Copper and zinc alloys, commonly known as brass, are versatile materials with a wide range of applications due to their unique combination of properties. Here's a general overview of the process and its potential applications. This article explores the synthesis of copper and zinc alloy powders through ball milling, followed by consolidation processes and the diverse range of applications for these materials. The controlled production of alloy powders using ball milling, combined with various consolidation techniques, opens opportunities for tailored material properties suitable for industries such as electronics, architecture, and health care.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kumar, M., Xiong, X., Wan, Z., Sun, Y., Tsang, D.C., Gupta, J., Gao, B., Cao, X., Tang, J., Ok, Y.S.: Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Biores. Technol. 312, 123613 (2020)CrossRef Kumar, M., Xiong, X., Wan, Z., Sun, Y., Tsang, D.C., Gupta, J., Gao, B., Cao, X., Tang, J., Ok, Y.S.: Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Biores. Technol. 312, 123613 (2020)CrossRef
2.
go back to reference Amrute, A.P., De Bellis, J., Felderhoff, M., Schüth, F.: Mechanochemical synthesis of catalytic materials. Chem. A Eur. J. 27(23), 6819–6847 Amrute, A.P., De Bellis, J., Felderhoff, M., Schüth, F.: Mechanochemical synthesis of catalytic materials. Chem. A Eur. J. 27(23), 6819–6847
3.
go back to reference Jamkhande, P.G., Ghule, N.W., Bamer, A.H., Kalaskar, M.G.: Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53, 101174 (2019)CrossRef Jamkhande, P.G., Ghule, N.W., Bamer, A.H., Kalaskar, M.G.: Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53, 101174 (2019)CrossRef
4.
go back to reference Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46(1–2), 1–184 (2001)CrossRef Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46(1–2), 1–184 (2001)CrossRef
5.
go back to reference El-Eskandarany, M.S.: Mechanical Alloying: for Fabrication of Advanced Engineering Materials. William Andrew (2001) El-Eskandarany, M.S.: Mechanical Alloying: for Fabrication of Advanced Engineering Materials. William Andrew (2001)
6.
go back to reference R. Shashanka, D.C.: Phase transformation and microstructure study of nanostructured austenitic and ferritic stainless steel powders prepared by planetary milling. Powder Technol. 259, 125–136 (2014) R. Shashanka, D.C.: Phase transformation and microstructure study of nanostructured austenitic and ferritic stainless steel powders prepared by planetary milling. Powder Technol. 259, 125–136 (2014)
7.
go back to reference Shashanka, R., Chaira, D.: Development of nano-structured duplex and ferritic stainless steel by pulverisette planetary milling followed by pressureless sintering. Mater. Charact. 99, 220–229 (2015)CrossRef Shashanka, R., Chaira, D.: Development of nano-structured duplex and ferritic stainless steel by pulverisette planetary milling followed by pressureless sintering. Mater. Charact. 99, 220–229 (2015)CrossRef
8.
go back to reference Lü, L., Lai, M.O.: Mechanical Alloying. Springer Science & Business Media (1997) Lü, L., Lai, M.O.: Mechanical Alloying. Springer Science & Business Media (1997)
9.
go back to reference Suryanarayana, C.: Mechanical alloying. In: Pergamon Materials Series, vol. 2, pp. 49–85. Pergamon (1999) Suryanarayana, C.: Mechanical alloying. In: Pergamon Materials Series, vol. 2, pp. 49–85. Pergamon (1999)
10.
go back to reference Wang, W.: Modeling and simulation of the dynamic process in high energy ball milling of metal powders (Doctoral dissertation, The University of Waikato) (2000) Wang, W.: Modeling and simulation of the dynamic process in high energy ball milling of metal powders (Doctoral dissertation, The University of Waikato) (2000)
11.
go back to reference Othman, A.R., Sardarinejad, A., Masrom, A.K.: Effect of milling parameters on mechanical alloying of aluminum powders. Int. J. Adv. Manuf. Technol. 76, 1319–1332 (2015)CrossRef Othman, A.R., Sardarinejad, A., Masrom, A.K.: Effect of milling parameters on mechanical alloying of aluminum powders. Int. J. Adv. Manuf. Technol. 76, 1319–1332 (2015)CrossRef
12.
go back to reference Angelo, P.C., Subramanian, R., Ravisankar, B.: Powder Metallurgy: science, Technology and Applications. PHI Learning Pvt. Ltd. (2022) Angelo, P.C., Subramanian, R., Ravisankar, B.: Powder Metallurgy: science, Technology and Applications. PHI Learning Pvt. Ltd. (2022)
13.
go back to reference Zarader, C.: Preparation of Polyetheretherketone-Nickel composite particles using ball milling for cold sprayed coatings on fiber reinforced plastics (2023) Zarader, C.: Preparation of Polyetheretherketone-Nickel composite particles using ball milling for cold sprayed coatings on fiber reinforced plastics (2023)
14.
go back to reference Shashanka, R., Chaira, D.: Optimization of milling parameters for the synthesis of nanostructured duplex and ferritic stainless steel powders by high energy planetary milling. Powder Technol. 278, 35–45 (2015)CrossRef Shashanka, R., Chaira, D.: Optimization of milling parameters for the synthesis of nanostructured duplex and ferritic stainless steel powders by high energy planetary milling. Powder Technol. 278, 35–45 (2015)CrossRef
15.
go back to reference Benjamin, J.S.: Mechanical alloying—A perspective. Metal Powder Rep. 45(2), 122–127 (1990)CrossRef Benjamin, J.S.: Mechanical alloying—A perspective. Metal Powder Rep. 45(2), 122–127 (1990)CrossRef
16.
go back to reference Gaffet, E., Le Caër, G.: Mechanical processing for nanomaterials. In: Encyclopedia of Nanoscience and Nanotechnology, vol. 5, no. 129, pp. 91–129. American scientific publishers, Stevenson Ranch, calif, USA Gaffet, E., Le Caër, G.: Mechanical processing for nanomaterials. In: Encyclopedia of Nanoscience and Nanotechnology, vol. 5, no. 129, pp. 91–129. American scientific publishers, Stevenson Ranch, calif, USA
17.
go back to reference Gorrasi, G., Sorrentino, A.: Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 17(5), 2610–2625 (2015)CrossRef Gorrasi, G., Sorrentino, A.: Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 17(5), 2610–2625 (2015)CrossRef
18.
go back to reference Wei, L.K., Abd Rahim, S.Z., Al Bakri Abdullah, M.M., Yin, A.T.M., Ghazali, M.F., Omar, M.F., Nemeș, O., Sandu, A.V., Vizureanu, P., Abdellah, A.E.H.: Producing metal powder from machining chips using ball milling process: a review. Materials 16(13), 4635 Wei, L.K., Abd Rahim, S.Z., Al Bakri Abdullah, M.M., Yin, A.T.M., Ghazali, M.F., Omar, M.F., Nemeș, O., Sandu, A.V., Vizureanu, P., Abdellah, A.E.H.: Producing metal powder from machining chips using ball milling process: a review. Materials 16(13), 4635
19.
go back to reference Yadav, T.P., Yadav, R.M., Singh, D.P.: Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol. 2(3), 22–48 (2012)CrossRef Yadav, T.P., Yadav, R.M., Singh, D.P.: Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol. 2(3), 22–48 (2012)CrossRef
20.
go back to reference Joy, J., Krishnamoorthy, A., Tanna, A., Kamathe, V., Nagar, R., Srinivasan, S.: Recent developments on the synthesis of nanocomposite materials via ball milling approach for energy storage applications. Appl. Sci. 12(18), 9312 (2022)CrossRef Joy, J., Krishnamoorthy, A., Tanna, A., Kamathe, V., Nagar, R., Srinivasan, S.: Recent developments on the synthesis of nanocomposite materials via ball milling approach for energy storage applications. Appl. Sci. 12(18), 9312 (2022)CrossRef
21.
go back to reference El-Eskandarany, M.S., Al-Hazza, A., Al-Hajji, L.A., Ali, N., Al-Duweesh, A.A., Banyan, M., Al-Ajmi, F.: Mechanical milling: a superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials 11(10), 2484 (2021)PubMedPubMedCentralCrossRef El-Eskandarany, M.S., Al-Hazza, A., Al-Hajji, L.A., Ali, N., Al-Duweesh, A.A., Banyan, M., Al-Ajmi, F.: Mechanical milling: a superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials 11(10), 2484 (2021)PubMedPubMedCentralCrossRef
22.
go back to reference Shashanka, R., Chaira, D., Kumara Swamy, B.E.: Electrocatalytic response of duplex and Yittria dispersed duplex stainless steel modified carbon paste electrode in detecting folic acid using cyclic voltammetry. Int. J. Electrochem. Sci. 10, 5586–5598 (2015) Shashanka, R., Chaira, D., Kumara Swamy, B.E.: Electrocatalytic response of duplex and Yittria dispersed duplex stainless steel modified carbon paste electrode in detecting folic acid using cyclic voltammetry. Int. J. Electrochem. Sci. 10, 5586–5598 (2015)
23.
go back to reference Gupta, S., Shashanka, R., Chaira, D.: Synthesis of nano-structured duplex and ferritic stainless steel powders by planetary milling: an experimental and simulation study. In: 4th National Conference on Processing and Characterization of Materials, IOP Conference on Series: materials Science and Engineering, vol. 75, p. 012033 (2015) Gupta, S., Shashanka, R., Chaira, D.: Synthesis of nano-structured duplex and ferritic stainless steel powders by planetary milling: an experimental and simulation study. In: 4th National Conference on Processing and Characterization of Materials, IOP Conference on Series: materials Science and Engineering, vol. 75, p. 012033 (2015)
24.
go back to reference Shashanka, R., Chaira, D.: Effects of nano-Y2O3 and Sintering parameters on the fabrication of PM duplex and ferritic stainless steels. Acta Metall. Sin. (Engl. Lett.) 29, 58–71 (2016) Shashanka, R., Chaira, D.: Effects of nano-Y2O3 and Sintering parameters on the fabrication of PM duplex and ferritic stainless steels. Acta Metall. Sin. (Engl. Lett.) 29, 58–71 (2016)
25.
go back to reference Dasgupta, R.: A look into Cu-based shape memory alloys: present scenario and future prospects. J. Mater. Res. 29(16), 1681–1698 (2014)CrossRef Dasgupta, R.: A look into Cu-based shape memory alloys: present scenario and future prospects. J. Mater. Res. 29(16), 1681–1698 (2014)CrossRef
26.
go back to reference Hesse, F.A.B., Verissimo, N.C., Soyama, J., Bertazzoli, R.: High-energy ball milling of intermetallic Ti–Cu alloys for the preparation of oxide nanoparticles. Adv. Powder Technol. 32(12), 4609–4620 (2021)CrossRef Hesse, F.A.B., Verissimo, N.C., Soyama, J., Bertazzoli, R.: High-energy ball milling of intermetallic Ti–Cu alloys for the preparation of oxide nanoparticles. Adv. Powder Technol. 32(12), 4609–4620 (2021)CrossRef
27.
go back to reference Saravanan, R., Rani, M.P.: Metal and Alloy Bonding-an Experimental Analysis: charge Density in Metals and Alloys. Springer Science & Business Media Saravanan, R., Rani, M.P.: Metal and Alloy Bonding-an Experimental Analysis: charge Density in Metals and Alloys. Springer Science & Business Media
28.
go back to reference Chaudhari, A.K., Singh, V.B.: A review of fundamental aspects, characterization and applications of electrodeposited nanocrystalline iron group metals, Ni–Fe alloy and oxide ceramics reinforced nanocomposite coatings. J. Alloy. Compd. 751, 194–214 (2018)CrossRef Chaudhari, A.K., Singh, V.B.: A review of fundamental aspects, characterization and applications of electrodeposited nanocrystalline iron group metals, Ni–Fe alloy and oxide ceramics reinforced nanocomposite coatings. J. Alloy. Compd. 751, 194–214 (2018)CrossRef
29.
go back to reference Azimi, A., Shokuhfar, A., Zolriasatein, A.: Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing. Mater. Sci. Eng., A 595, 124–130 (2014)CrossRef Azimi, A., Shokuhfar, A., Zolriasatein, A.: Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing. Mater. Sci. Eng., A 595, 124–130 (2014)CrossRef
30.
go back to reference Costa da Silva, F., Kazmierczak, K., Edil da Costa, C., Milan, J.C.G., Torralba, J.M.: Zamak 2 alloy produced by mechanical alloying and consolidated by sintering and hot pressing. J. Manuf. Sci. Eng. 139(9), 091011 (2017)CrossRef Costa da Silva, F., Kazmierczak, K., Edil da Costa, C., Milan, J.C.G., Torralba, J.M.: Zamak 2 alloy produced by mechanical alloying and consolidated by sintering and hot pressing. J. Manuf. Sci. Eng. 139(9), 091011 (2017)CrossRef
31.
go back to reference Houshmand, A., 2019. Phase selection and transformation kinetics of copper-zinc powder mixture subjected to ultrasonic powder consolidation. Northeastern University. College of Engineering. Department of Mechanical and Industrial Engineering Houshmand, A., 2019. Phase selection and transformation kinetics of copper-zinc powder mixture subjected to ultrasonic powder consolidation. Northeastern University. College of Engineering. Department of Mechanical and Industrial Engineering
32.
go back to reference Raihanuzzaman, R.M., Xie, Z., Hong, S.J., Ghomashchi, R.: Powder refinement, consolidation and mechanical properties of cemented carbides—An overview. Powder Technol. 261, 1–13 (2014)CrossRef Raihanuzzaman, R.M., Xie, Z., Hong, S.J., Ghomashchi, R.: Powder refinement, consolidation and mechanical properties of cemented carbides—An overview. Powder Technol. 261, 1–13 (2014)CrossRef
33.
go back to reference Yurlova, M.S., Demenyuk, V.D., Lebedeva, L.Y., Dudina, D.V., Grigoryev, E.G., Olevsky, E.A.: Electric pulse consolidation: an alternative to spark plasma sintering. J. Mater. Sci. 49(3), 952–985 (2014)CrossRef Yurlova, M.S., Demenyuk, V.D., Lebedeva, L.Y., Dudina, D.V., Grigoryev, E.G., Olevsky, E.A.: Electric pulse consolidation: an alternative to spark plasma sintering. J. Mater. Sci. 49(3), 952–985 (2014)CrossRef
34.
go back to reference Oguntuyi, S.D., Johnson, O.T., Shongwe, M.B.: Spark plasma sintering of ceramic matrix composite of TiC: microstructure, densification, and mechanical properties: a review. Int. J. Adv. Manuf. Technol. 116(1–2), 69–82 (2021)CrossRef Oguntuyi, S.D., Johnson, O.T., Shongwe, M.B.: Spark plasma sintering of ceramic matrix composite of TiC: microstructure, densification, and mechanical properties: a review. Int. J. Adv. Manuf. Technol. 116(1–2), 69–82 (2021)CrossRef
35.
go back to reference Šepelák, V., Bégin-Colin, S., Le Caer, G.: Transformations in oxides induced by high-energy ball-milling. Dalton Trans. 41(39), 11927–11948 (2012)PubMedCrossRef Šepelák, V., Bégin-Colin, S., Le Caer, G.: Transformations in oxides induced by high-energy ball-milling. Dalton Trans. 41(39), 11927–11948 (2012)PubMedCrossRef
36.
go back to reference Samal, P., Newkirk, J.: Milling of brittle and ductile materials. In: Powder Metall, pp. 77–87. ASM International Samal, P., Newkirk, J.: Milling of brittle and ductile materials. In: Powder Metall, pp. 77–87. ASM International
37.
go back to reference Delogu, F., Gorrasi, G., Sorrentino, A.: Fabrication of polymer nanocomposites via ball milling: present status and future perspectives. Prog. Mater. Sci. 86, 75–126 (2017)CrossRef Delogu, F., Gorrasi, G., Sorrentino, A.: Fabrication of polymer nanocomposites via ball milling: present status and future perspectives. Prog. Mater. Sci. 86, 75–126 (2017)CrossRef
38.
go back to reference Neikov, O.D., Naboychenko, S.S., Yefimov, N.A., Neikov, O.D.: Mechanical alloying. In: Neikov, O.D., Naboychenko, S.S., Murashova, IV., Gopienko, V.G., Frishberg, IV., Lotsko, D.V.S. (eds.) Handbook of Non-ferrous Metal Powders, pp. 63–79 (2019) Neikov, O.D., Naboychenko, S.S., Yefimov, N.A., Neikov, O.D.: Mechanical alloying. In: Neikov, O.D., Naboychenko, S.S., Murashova, IV., Gopienko, V.G., Frishberg, IV., Lotsko, D.V.S. (eds.) Handbook of Non-ferrous Metal Powders, pp. 63–79 (2019)
39.
go back to reference Lines, M.G.: Nanomaterials for practical functional uses. J. Alloys Compd. 449(1–2), 242–245 (2008)CrossRef Lines, M.G.: Nanomaterials for practical functional uses. J. Alloys Compd. 449(1–2), 242–245 (2008)CrossRef
40.
go back to reference Gauthier, M., Mazouzi, D., Reyter, D., Lestriez, B., Moreau, P., Guyomard, D., Roué, L.: A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ. Sci. 6(7), 2145–2155 (2013)CrossRef Gauthier, M., Mazouzi, D., Reyter, D., Lestriez, B., Moreau, P., Guyomard, D., Roué, L.: A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ. Sci. 6(7), 2145–2155 (2013)CrossRef
41.
go back to reference Xing, T., Sunarso, J., Yang, W., Yin, Y., Glushenkov, A.M., Li, L.H., Howlett, P.C., Chen, Y.: Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale 5(17), 7970–7976 (2013)PubMedCrossRef Xing, T., Sunarso, J., Yang, W., Yin, Y., Glushenkov, A.M., Li, L.H., Howlett, P.C., Chen, Y.: Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale 5(17), 7970–7976 (2013)PubMedCrossRef
42.
go back to reference Ahmadi, M., Zabihi, O., Li, Q., Fakhrhoseini, S.M., Naebe, M.: A hydrothermal-assisted ball milling approach for scalable production of high-quality functionalized MoS2 nanosheets for polymer nanocomposites. Nanomaterials 9(10), 1400 (2019)PubMedPubMedCentralCrossRef Ahmadi, M., Zabihi, O., Li, Q., Fakhrhoseini, S.M., Naebe, M.: A hydrothermal-assisted ball milling approach for scalable production of high-quality functionalized MoS2 nanosheets for polymer nanocomposites. Nanomaterials 9(10), 1400 (2019)PubMedPubMedCentralCrossRef
43.
go back to reference Gusev, A.I., Kurlov, A.S.: Production of nanocrystalline powders by high-energy ball milling: model and experiment. Nanotechnology 19(26), 265302 (2008)PubMedCrossRef Gusev, A.I., Kurlov, A.S.: Production of nanocrystalline powders by high-energy ball milling: model and experiment. Nanotechnology 19(26), 265302 (2008)PubMedCrossRef
44.
go back to reference Nayak, A.K., Shashanka, R., Chaira, D.: Effect of nanosize yittria and tungsten addition to duplex stainless steel during high energy planetary milling. In: 5th National Conference on Processing and Characterization of Materials, IOP Conference on Series: materials Science and Engineering, vol. 115, 012008 (2016) Nayak, A.K., Shashanka, R., Chaira, D.: Effect of nanosize yittria and tungsten addition to duplex stainless steel during high energy planetary milling. In: 5th National Conference on Processing and Characterization of Materials, IOP Conference on Series: materials Science and Engineering, vol. 115, 012008 (2016)
45.
go back to reference Shashanka, R., Chaira, D., Chakravarty, D.: Fabrication of nano-yttria dispersed duplex and ferritic stainless steels by planetary milling followed by spark plasma sintering and non-lubricated sliding wear behaviour study. J. Mater. Sci. Eng. B 6(5–6), 111–125 (2016) Shashanka, R., Chaira, D., Chakravarty, D.: Fabrication of nano-yttria dispersed duplex and ferritic stainless steels by planetary milling followed by spark plasma sintering and non-lubricated sliding wear behaviour study. J. Mater. Sci. Eng. B 6(5–6), 111–125 (2016)
46.
go back to reference Shashanka, R., Chaira, D.: Effect of sintering temperature and atmosphere on nonlubricated sliding wear of nano-yttria dispersed and yttria free duplex and ferritic stainless steel fabricated by powder metallurgy. Tribol. Trans. 60, 324–336 (2017)CrossRef Shashanka, R., Chaira, D.: Effect of sintering temperature and atmosphere on nonlubricated sliding wear of nano-yttria dispersed and yttria free duplex and ferritic stainless steel fabricated by powder metallurgy. Tribol. Trans. 60, 324–336 (2017)CrossRef
47.
go back to reference Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J.T., Kim, H., Cho, J.M., Yun, G., Lee, J.: Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 9(6), 304–316 (2014)CrossRef Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J.T., Kim, H., Cho, J.M., Yun, G., Lee, J.: Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 9(6), 304–316 (2014)CrossRef
48.
go back to reference Muñoz-Batista, M.J., Rodriguez-Padron, D., Puente-Santiago, A.R., Luque, R.: Mechanochemistry: toward sustainable design of advanced nanomaterials for electrochemical energy storage and catalytic applications (2018) Muñoz-Batista, M.J., Rodriguez-Padron, D., Puente-Santiago, A.R., Luque, R.: Mechanochemistry: toward sustainable design of advanced nanomaterials for electrochemical energy storage and catalytic applications (2018)
49.
go back to reference Mateti, S., Mathesh, M., Liu, Z., Tao, T., Ramireddy, T., Glushenkov, A.M., Yang, W., Chen, Y.I.: Mechanochemistry: a force in disguise and conditional effects towards chemical reactions. Chem. Commun. 57(9), 1080–1092 (2021)CrossRef Mateti, S., Mathesh, M., Liu, Z., Tao, T., Ramireddy, T., Glushenkov, A.M., Yang, W., Chen, Y.I.: Mechanochemistry: a force in disguise and conditional effects towards chemical reactions. Chem. Commun. 57(9), 1080–1092 (2021)CrossRef
50.
go back to reference Lee, J.Y., An, J., Chua, C.K.: Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 7, 120–133 (2017)CrossRef Lee, J.Y., An, J., Chua, C.K.: Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 7, 120–133 (2017)CrossRef
51.
go back to reference Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. B Eng. 143, 172–196 (2018)CrossRef Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. B Eng. 143, 172–196 (2018)CrossRef
52.
go back to reference Hu, Y., Li, B., Yu, C., Fang, H., Li, Z.: Mechanochemical preparation of single atom catalysts for versatile catalytic applications: a perspective review. Mater. Today (2023) Hu, Y., Li, B., Yu, C., Fang, H., Li, Z.: Mechanochemical preparation of single atom catalysts for versatile catalytic applications: a perspective review. Mater. Today (2023)
53.
go back to reference Kabashin, A.V., Singh, A., Swihart, M.T., Zavestovskaya, I.N., Prasad, P.N.: Laser-processed nanosilicon: a multifunctional nanomaterial for energy and healthcare. ACS Nano 13(9), 9841–9867 (2019)PubMedCrossRef Kabashin, A.V., Singh, A., Swihart, M.T., Zavestovskaya, I.N., Prasad, P.N.: Laser-processed nanosilicon: a multifunctional nanomaterial for energy and healthcare. ACS Nano 13(9), 9841–9867 (2019)PubMedCrossRef
54.
go back to reference Neikov, O.D., Yefimov, N.A., Naboychenko, S.: Handbook of Non-ferrous Metal Powders: technologies and Applications. Elsevier (2009) Neikov, O.D., Yefimov, N.A., Naboychenko, S.: Handbook of Non-ferrous Metal Powders: technologies and Applications. Elsevier (2009)
55.
go back to reference Şap, S., Uzun, M., Usca, Ü.A., Pimenov, D.Y., Giasin, K., Wojciechowski, S.: Investigation on microstructure, mechanical, and tribological performance of Cu base hybrid composite materials. J. Market. Res. 15, 6990–7003 (2021) Şap, S., Uzun, M., Usca, Ü.A., Pimenov, D.Y., Giasin, K., Wojciechowski, S.: Investigation on microstructure, mechanical, and tribological performance of Cu base hybrid composite materials. J. Market. Res. 15, 6990–7003 (2021)
56.
go back to reference Casati, R., Vedani, M.: Metal matrix composites reinforced by nano-particles—A review. Metals 4(1), 65–83 (2014)CrossRef Casati, R., Vedani, M.: Metal matrix composites reinforced by nano-particles—A review. Metals 4(1), 65–83 (2014)CrossRef
57.
go back to reference The Luong, N., Okumura, H., Yamasue, E., Ishihara, K.N.: Structure and catalytic behaviour of CuO–CeO2 prepared by high-energy ball milling. Royal Soc. Open Sci. 6(2), 181861 (2019)CrossRef The Luong, N., Okumura, H., Yamasue, E., Ishihara, K.N.: Structure and catalytic behaviour of CuO–CeO2 prepared by high-energy ball milling. Royal Soc. Open Sci. 6(2), 181861 (2019)CrossRef
58.
go back to reference Lu, L., Lai, M.O.: Formation of new materials in the solid state by mechanical alloying. Mater. Des. 16(1), 33–39 (1995)CrossRef Lu, L., Lai, M.O.: Formation of new materials in the solid state by mechanical alloying. Mater. Des. 16(1), 33–39 (1995)CrossRef
59.
go back to reference Shashanka, R.: Synthesis of nano-structured stainless steel powder by mechanical alloyingan overview. Int. J. Sci. Eng. Res. 8, 588–594 (2017) Shashanka, R.: Synthesis of nano-structured stainless steel powder by mechanical alloyingan overview. Int. J. Sci. Eng. Res. 8, 588–594 (2017)
60.
go back to reference Shashanka, R., Chaira, D., Kumara Swamy, B.E.: Effect of Y2O3 nanoparticles on corrosion study of spark plasma sintered duplex and ferritic stainless steel samples by linear sweep voltammetric method. Arch. Metall. Mater. 63, 749–763 (2018) Shashanka, R., Chaira, D., Kumara Swamy, B.E.: Effect of Y2O3 nanoparticles on corrosion study of spark plasma sintered duplex and ferritic stainless steel samples by linear sweep voltammetric method. Arch. Metall. Mater. 63, 749–763 (2018)
61.
go back to reference Scattergood, R.O., Koch, C.C., Murty, K.L., Brenner, D.: Strengthening mechanisms in nanocrystalline alloys. Mater. Sci. Eng. A 493(1–2), 3–11 (2008)CrossRef Scattergood, R.O., Koch, C.C., Murty, K.L., Brenner, D.: Strengthening mechanisms in nanocrystalline alloys. Mater. Sci. Eng. A 493(1–2), 3–11 (2008)CrossRef
62.
go back to reference Mokdad, F., Chen, D.L., Liu, Z.Y., Xiao, B.L., Ni, D.R., Ma, Z.Y.: Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite. Carbon 104, 64–77 (2016)CrossRef Mokdad, F., Chen, D.L., Liu, Z.Y., Xiao, B.L., Ni, D.R., Ma, Z.Y.: Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite. Carbon 104, 64–77 (2016)CrossRef
63.
go back to reference Kumar, K., Dixit, S., Prakash, A., Vatin, N.I., Ul Haq, M.Z., Tummala, S.K., Bobba, P.B., Sobti, R., Kalpana, K., 2023. Understanding composites and intermetallic: Microstructure, properties, and applications. In: E3S Web of Conferences, vol. 430, p. 01196. EDP Sciences Kumar, K., Dixit, S., Prakash, A., Vatin, N.I., Ul Haq, M.Z., Tummala, S.K., Bobba, P.B., Sobti, R., Kalpana, K., 2023. Understanding composites and intermetallic: Microstructure, properties, and applications. In: E3S Web of Conferences, vol. 430, p. 01196. EDP Sciences
64.
go back to reference Sasikumar, Y., Indira, K., Rajendran, N.: Surface modification methods for titanium and its alloys and their corrosion behavior in biological environment: a review. J. Bio- Tribo-Corros. 5, 1–25 (2019)CrossRef Sasikumar, Y., Indira, K., Rajendran, N.: Surface modification methods for titanium and its alloys and their corrosion behavior in biological environment: a review. J. Bio- Tribo-Corros. 5, 1–25 (2019)CrossRef
65.
go back to reference Manivasagam, G., Mudali, U.K., Asokamani, R., Raj, B.: Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices. Corros. Rev. 21(2–3), 125–160 (2003)CrossRef Manivasagam, G., Mudali, U.K., Asokamani, R., Raj, B.: Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices. Corros. Rev. 21(2–3), 125–160 (2003)CrossRef
66.
go back to reference Ziaee, M., Crane, N.B.: Binder jetting: A review of process, materials, and methods. Addit. Manuf. 28, 781–801 (2019) Ziaee, M., Crane, N.B.: Binder jetting: A review of process, materials, and methods. Addit. Manuf. 28, 781–801 (2019)
67.
go back to reference Basheer, A.A.: Advances in the smart materials applications in the aerospace industries. Aircr. Eng. Aerosp. Technol. 92(7), 1027–1035 (2020)CrossRef Basheer, A.A.: Advances in the smart materials applications in the aerospace industries. Aircr. Eng. Aerosp. Technol. 92(7), 1027–1035 (2020)CrossRef
68.
go back to reference Sathish, T., Saravanan, R., Kumar, A., Prakash, C., Shahazad, M., Gupta, M., Senthilkumar, N., Pandit, B., Ubaidullah, M., Smirnov, V.A.: Influence of synthesizing parameters on surface qualities of aluminium alloy AA5083/CNT/MoS2 nanocomposite in powder metallurgy technique. J. Mater. Res. Technol. (2023) Sathish, T., Saravanan, R., Kumar, A., Prakash, C., Shahazad, M., Gupta, M., Senthilkumar, N., Pandit, B., Ubaidullah, M., Smirnov, V.A.: Influence of synthesizing parameters on surface qualities of aluminium alloy AA5083/CNT/MoS2 nanocomposite in powder metallurgy technique. J. Mater. Res. Technol. (2023)
69.
go back to reference Everhart, J.L.: Copper and Copper Alloy Powder Metallurgy: properties and Applications, vol. 129. Metal Powder Industries Federation, Princeton, NJ (1975) Everhart, J.L.: Copper and Copper Alloy Powder Metallurgy: properties and Applications, vol. 129. Metal Powder Industries Federation, Princeton, NJ (1975)
70.
go back to reference Mechiri, S.K., Vasu, V., Venu Gopal, A.: Investigation of thermal conductivity and rheological properties of vegetable oil based hybrid nanofluids containing Cu–Zn hybrid nanoparticles. Exp. Heat Transfer 30(3), 205–217 (2017)CrossRef Mechiri, S.K., Vasu, V., Venu Gopal, A.: Investigation of thermal conductivity and rheological properties of vegetable oil based hybrid nanofluids containing Cu–Zn hybrid nanoparticles. Exp. Heat Transfer 30(3), 205–217 (2017)CrossRef
71.
go back to reference Rubinstein, M.H., Gould, P.: Praticle size reduction in the ball mill. Drug Dev. Ind. Pharm. 13(1), 81–92 (1987)CrossRef Rubinstein, M.H., Gould, P.: Praticle size reduction in the ball mill. Drug Dev. Ind. Pharm. 13(1), 81–92 (1987)CrossRef
72.
go back to reference Nabiyouni, G., Fesharaki, M.J., Mozafari, M., Amighian, J.: Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique. Chin. Phys. Lett. 27(12), 126401 (2010)CrossRef Nabiyouni, G., Fesharaki, M.J., Mozafari, M., Amighian, J.: Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique. Chin. Phys. Lett. 27(12), 126401 (2010)CrossRef
73.
go back to reference DeCastro, C.L., Mitchell, B.S.: Nanoparticles from mechanical attrition. In: Synthesis, Functionalization, and Surface Treatment of Nanoparticles, vol. 5 (2002) DeCastro, C.L., Mitchell, B.S.: Nanoparticles from mechanical attrition. In: Synthesis, Functionalization, and Surface Treatment of Nanoparticles, vol. 5 (2002)
74.
go back to reference Santhanam, P.R., Dreizin, E.L.: Predicting conditions for scaled-up manufacturing of materials prepared by ball milling. Powder Technol. 221, 403–411 (2012)CrossRef Santhanam, P.R., Dreizin, E.L.: Predicting conditions for scaled-up manufacturing of materials prepared by ball milling. Powder Technol. 221, 403–411 (2012)CrossRef
75.
go back to reference Koch, C.C.: The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review. Nanostruct. Mater. 2(2), 109–129 (1993)CrossRef Koch, C.C.: The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review. Nanostruct. Mater. 2(2), 109–129 (1993)CrossRef
76.
go back to reference Bahmanpour, H., Youssef, K.M., Scattergood, R.O., Koch, C.C.: Mechanical behavior of bulk nanocrystalline copper alloys produced by high energy ball milling. J. Mater. Sci. 46, 6316–6322 (2011)CrossRef Bahmanpour, H., Youssef, K.M., Scattergood, R.O., Koch, C.C.: Mechanical behavior of bulk nanocrystalline copper alloys produced by high energy ball milling. J. Mater. Sci. 46, 6316–6322 (2011)CrossRef
77.
go back to reference Rajeshkumar, L., Suriyanarayanan, R., Hari, K.S., Babu, S.V., Bhuvaneswari, V. and Karunan, M.J.: Influence of boron carbide addition on particle size of copper zinc alloys synthesized by powder metallurgy. In: IOP Conference Series: materials Science and Engineering, vol. 954, no. 1, p. 012008. IOP Publishing (2020) Rajeshkumar, L., Suriyanarayanan, R., Hari, K.S., Babu, S.V., Bhuvaneswari, V. and Karunan, M.J.: Influence of boron carbide addition on particle size of copper zinc alloys synthesized by powder metallurgy. In: IOP Conference Series: materials Science and Engineering, vol. 954, no. 1, p. 012008. IOP Publishing (2020)
78.
go back to reference Bor, A., Jargalsaikhan, B., Lee, J., Choi, H.: Effect of different milling media for surface coating on the copper powder using two kinds of ball mills with discrete element method simulation. Coatings 10(9), 898 (2020)CrossRef Bor, A., Jargalsaikhan, B., Lee, J., Choi, H.: Effect of different milling media for surface coating on the copper powder using two kinds of ball mills with discrete element method simulation. Coatings 10(9), 898 (2020)CrossRef
79.
go back to reference Tyler, D.E., Black, W.T.: Introduction to copper and copper alloys (1990) Tyler, D.E., Black, W.T.: Introduction to copper and copper alloys (1990)
80.
go back to reference Bahmanpour, H., Yousseff, K.M., Khoshkhoo, M.S., Scudino, S., Eckert, J., Scattergood, R.O., Koch, C.C., Khoshkhoo, M.S., Freudenberger, J., Zehetbauer, M.J.: 5.0. in situ consolidation of Cu and Cu–Zn alloys via room temperature ball milling Bahmanpour, H., Yousseff, K.M., Khoshkhoo, M.S., Scudino, S., Eckert, J., Scattergood, R.O., Koch, C.C., Khoshkhoo, M.S., Freudenberger, J., Zehetbauer, M.J.: 5.0. in situ consolidation of Cu and Cu–Zn alloys via room temperature ball milling
81.
go back to reference Camurri, C., Ortiz, M., Carrasco, C.: Hot consolidation of Cu–Li powder alloys: a first approach to characterization. Mater. Charact. 51(2–3), 171–176 (2003)CrossRef Camurri, C., Ortiz, M., Carrasco, C.: Hot consolidation of Cu–Li powder alloys: a first approach to characterization. Mater. Charact. 51(2–3), 171–176 (2003)CrossRef
82.
go back to reference Queudet, H., Lemonnier, S., Barraud, E., Guyon, J., Ghanbaja, J., Allain, N., Gaffet, E.: One-step consolidation and precipitation hardening of an ultrafine-grained Al–Zn–Mg alloy powder by Spark Plasma Sintering. Mater. Sci. Eng. A 685, 227–234 (2017)CrossRef Queudet, H., Lemonnier, S., Barraud, E., Guyon, J., Ghanbaja, J., Allain, N., Gaffet, E.: One-step consolidation and precipitation hardening of an ultrafine-grained Al–Zn–Mg alloy powder by Spark Plasma Sintering. Mater. Sci. Eng. A 685, 227–234 (2017)CrossRef
83.
go back to reference Shashanka, R.: Non-lubricated dry sliding wear behavior of spark plasma sintered nanostructured stainless steel. J. Mater. Environ. Sci. 10(8), 767–777 (2019) Shashanka, R.: Non-lubricated dry sliding wear behavior of spark plasma sintered nanostructured stainless steel. J. Mater. Environ. Sci. 10(8), 767–777 (2019)
84.
go back to reference Shashanka, R., Orhan Uzun, D. Chaira, Synthesis of nano-structured duplex and ferritic stainless steel powders by dry milling and its comparison with wet milling. Arch. Metall. Mater. 65(1), 5–14 (2020) Shashanka, R., Orhan Uzun, D. Chaira, Synthesis of nano-structured duplex and ferritic stainless steel powders by dry milling and its comparison with wet milling. Arch. Metall. Mater. 65(1), 5–14 (2020)
85.
go back to reference Rayappa, S.M., Shamanth, V., Sharath, P.C., Shashanka, R., Hemanth, K.: A review on spark plasma sintering of duplex stainless steels. Mater. Today: Proc. 45, 138–144 (2021) Rayappa, S.M., Shamanth, V., Sharath, P.C., Shashanka, R., Hemanth, K.: A review on spark plasma sintering of duplex stainless steels. Mater. Today: Proc. 45, 138–144 (2021)
86.
go back to reference Mahale, R.S., Rajendrachari, S., Vasanth, S., Krishna, H., Kapanigowda, N.S., Chikkegowda, S.P., Patil, A.: Technology and challenges in additive manufacturing of duplex stainless steels. Biointerface Res. Appl. Chem. 12(1), 1110–1119 (2022) Mahale, R.S., Rajendrachari, S., Vasanth, S., Krishna, H., Kapanigowda, N.S., Chikkegowda, S.P., Patil, A.: Technology and challenges in additive manufacturing of duplex stainless steels. Biointerface Res. Appl. Chem. 12(1), 1110–1119 (2022)
87.
go back to reference Clinktan, R., Senthil, V., Ramkumar, K.R., Sivasankaran, S., Al-Mufadi, F.A.: Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceram. Int. 45(3), 3492–3501 (2019)CrossRef Clinktan, R., Senthil, V., Ramkumar, K.R., Sivasankaran, S., Al-Mufadi, F.A.: Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceram. Int. 45(3), 3492–3501 (2019)CrossRef
88.
go back to reference Ramkumar, K.R., Sivasankaran, S., Alaboodi, A.S.: Effect of alumina content on microstructures, mechanical, wear and machining behavior of Cu-10Zn nanocomposite prepared by mechanical alloying and hot-pressing. J. Alloy. Compd. 709, 129–141 (2017)CrossRef Ramkumar, K.R., Sivasankaran, S., Alaboodi, A.S.: Effect of alumina content on microstructures, mechanical, wear and machining behavior of Cu-10Zn nanocomposite prepared by mechanical alloying and hot-pressing. J. Alloy. Compd. 709, 129–141 (2017)CrossRef
89.
go back to reference Stalin, B., Ravichandran, M., Jasper, S., Kannan, C.R.: Synthesis and characterization of brass—AlN composites synthesized by ball milling. Mater. Today: Proc. 22, 2573–2581 (2020) Stalin, B., Ravichandran, M., Jasper, S., Kannan, C.R.: Synthesis and characterization of brass—AlN composites synthesized by ball milling. Mater. Today: Proc. 22, 2573–2581 (2020)
90.
go back to reference Pradeep, N.B., Hegde, M.R., Patel, G.M., Giasin, K., Pimenov, D.Y., Wojciechowski, S.: Synthesis and characterization of mechanically alloyed nanostructured ternary titanium based alloy for bio-medical applications. J. Market. Res. 16, 88–101 (2022) Pradeep, N.B., Hegde, M.R., Patel, G.M., Giasin, K., Pimenov, D.Y., Wojciechowski, S.: Synthesis and characterization of mechanically alloyed nanostructured ternary titanium based alloy for bio-medical applications. J. Market. Res. 16, 88–101 (2022)
91.
go back to reference Andrade-Gamboa, J., Gennari, F.C., Larochette, P.A., Neyertz, C., Ahlers, M., Pelegrina, J.L.: Stability of Cu–Zn phases under low energy ball milling. Mater. Sci. Eng. A 447(1–2), 324–331 (2007)CrossRef Andrade-Gamboa, J., Gennari, F.C., Larochette, P.A., Neyertz, C., Ahlers, M., Pelegrina, J.L.: Stability of Cu–Zn phases under low energy ball milling. Mater. Sci. Eng. A 447(1–2), 324–331 (2007)CrossRef
92.
go back to reference Abdolhoseinzadeh, A., Sheibani, S.: Enhanced photocatalytic performance of Cu2O nano-photocatalyst powder modified by ball milling and ZnO. Adv. Powder Technol. 31(1), 40–50 (2020)CrossRef Abdolhoseinzadeh, A., Sheibani, S.: Enhanced photocatalytic performance of Cu2O nano-photocatalyst powder modified by ball milling and ZnO. Adv. Powder Technol. 31(1), 40–50 (2020)CrossRef
93.
go back to reference Guo, D., Kazasidis, M., Hawkins, A., Fan, N., Leclerc, Z., MacDonald, D., Nastic, A., Nikbakht, R., Ortiz-Fernandez, R., Rahmati, S., Razavipour, M.: Cold spray: over 30 years of development toward a hot future. J. Therm. Spray Technol. 31(4), 866–907 (2022)PubMedPubMedCentralCrossRef Guo, D., Kazasidis, M., Hawkins, A., Fan, N., Leclerc, Z., MacDonald, D., Nastic, A., Nikbakht, R., Ortiz-Fernandez, R., Rahmati, S., Razavipour, M.: Cold spray: over 30 years of development toward a hot future. J. Therm. Spray Technol. 31(4), 866–907 (2022)PubMedPubMedCentralCrossRef
94.
go back to reference Capuzzi, S., Timelli, G.: Preparation and melting of scrap in aluminum recycling: a review. Metals 8(4), 249 (2018)CrossRef Capuzzi, S., Timelli, G.: Preparation and melting of scrap in aluminum recycling: a review. Metals 8(4), 249 (2018)CrossRef
95.
go back to reference Rajendrachari, S., Adimule, V.M., Jayaprakash, G.K., Pandith, A.: Electrochemical oxidation of methylene blue dye in wastewater using mechanically alloyed high entropy alloy modified carbon paste electrode using cyclic voltammetry. Mater. Res. Express 10, 054003 (2023). https://doi.org/10.1088/2053-1591/acd3d7 Rajendrachari, S., Adimule, V.M., Jayaprakash, G.K., Pandith, A.: Electrochemical oxidation of methylene blue dye in wastewater using mechanically alloyed high entropy alloy modified carbon paste electrode using cyclic voltammetry. Mater. Res. Express 10, 054003 (2023). https://​doi.​org/​10.​1088/​2053-1591/​acd3d7
96.
go back to reference Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R. Rep. 74(10), 281–350 (2013)CrossRef Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R. Rep. 74(10), 281–350 (2013)CrossRef
97.
go back to reference Orru, R., Licheri, R., Locci, A.M., Cincotti, A., Cao, G.: Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R. Rep. 63(4–6), 127–287 (2009)CrossRef Orru, R., Licheri, R., Locci, A.M., Cincotti, A., Cao, G.: Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R. Rep. 63(4–6), 127–287 (2009)CrossRef
98.
go back to reference Dancer, C.E.: Flash sintering of ceramic materials. Mater. Res. Express 3(10), 102001 (2016)CrossRef Dancer, C.E.: Flash sintering of ceramic materials. Mater. Res. Express 3(10), 102001 (2016)CrossRef
99.
go back to reference Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A.: On the mechanism of microwave flash sintering of ceramics. Materials 9(8), 684 (2016)PubMedPubMedCentralCrossRef Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A.: On the mechanism of microwave flash sintering of ceramics. Materials 9(8), 684 (2016)PubMedPubMedCentralCrossRef
100.
go back to reference Heidary, D.S.B., Lanagan, M., Randall, C.A.: Contrasting energy efficiency in various ceramic sintering processes. J. Eur. Ceram. Soc. 38(4), 1018–1029 (2018)CrossRef Heidary, D.S.B., Lanagan, M., Randall, C.A.: Contrasting energy efficiency in various ceramic sintering processes. J. Eur. Ceram. Soc. 38(4), 1018–1029 (2018)CrossRef
101.
go back to reference Ross, F.M., Minor, A.M.: In situ transmission electron microscopy. In: Springer Handbook of Microscopy, pp. 101–187 (2019) Ross, F.M., Minor, A.M.: In situ transmission electron microscopy. In: Springer Handbook of Microscopy, pp. 101–187 (2019)
102.
go back to reference Himanen, L., Geurts, A., Foster, A.S., Rinke, P.: Data-driven materials science: status, challenges, and perspectives. Adv. Sci. 6(21), 1900808 (2019)CrossRef Himanen, L., Geurts, A., Foster, A.S., Rinke, P.: Data-driven materials science: status, challenges, and perspectives. Adv. Sci. 6(21), 1900808 (2019)CrossRef
103.
go back to reference Yang, L., Hsu, K., Baughman, B., Godfrey, D., Medina, F., Menon, M., Wiener, S.: Additive Manufacturing of Metals: the Technology, Materials, Design and Production (2017) Yang, L., Hsu, K., Baughman, B., Godfrey, D., Medina, F., Menon, M., Wiener, S.: Additive Manufacturing of Metals: the Technology, Materials, Design and Production (2017)
104.
go back to reference Mobarak, M.H., Islam, M.A., Hossain, N., Al Mahmud, M.Z., Rayhan, M.T., Nishi, N.J., Chowdhury, M.A.: Recent advances of additive manufacturing in implant fabrication—A review. Appl. Surf. Sci. Adv. 18, 100462 (2023)CrossRef Mobarak, M.H., Islam, M.A., Hossain, N., Al Mahmud, M.Z., Rayhan, M.T., Nishi, N.J., Chowdhury, M.A.: Recent advances of additive manufacturing in implant fabrication—A review. Appl. Surf. Sci. Adv. 18, 100462 (2023)CrossRef
105.
go back to reference Mohanty, A.K., Vivekanandhan, S., Pin, J.M., Misra, M.: Composites from renewable and sustainable resources: challenges and innovations. Science 362(6414), 536–542 (2018)PubMedCrossRef Mohanty, A.K., Vivekanandhan, S., Pin, J.M., Misra, M.: Composites from renewable and sustainable resources: challenges and innovations. Science 362(6414), 536–542 (2018)PubMedCrossRef
106.
go back to reference Nidumolu, R., Prahalad, C.K., Rangaswami, M.R.: Why sustainability is now the key driver of innovation. Harv. Bus. Rev. 87(9), 56–64 (2009) Nidumolu, R., Prahalad, C.K., Rangaswami, M.R.: Why sustainability is now the key driver of innovation. Harv. Bus. Rev. 87(9), 56–64 (2009)
107.
go back to reference Whang, S.H. (ed.).: Nanostructured Metals and Alloys: processing, Microstructure, Mechanical Properties and Applications. Elsevier (2011) Whang, S.H. (ed.).: Nanostructured Metals and Alloys: processing, Microstructure, Mechanical Properties and Applications. Elsevier (2011)
108.
go back to reference Pimenov, D.Y., Mia, M., Gupta, M.K., Machado, Á.R., Pintaude, G., Unune, D.R., Khanna, N., Khan, A.M., Tomaz, Í., Wojciechowski, S., Kuntoğlu, M.: Resource saving by optimization and machining environments for sustainable manufacturing: a review and future prospects. Renew. Sustain. Energy Rev. 166, 112660 (2022)CrossRef Pimenov, D.Y., Mia, M., Gupta, M.K., Machado, Á.R., Pintaude, G., Unune, D.R., Khanna, N., Khan, A.M., Tomaz, Í., Wojciechowski, S., Kuntoğlu, M.: Resource saving by optimization and machining environments for sustainable manufacturing: a review and future prospects. Renew. Sustain. Energy Rev. 166, 112660 (2022)CrossRef
109.
go back to reference Konieczny, J., Rdzawski, Z.: Antibacterial properties of copper and its alloys. Arch. Mater. Sci. Eng. 56(2), 53–60 (2012) Konieczny, J., Rdzawski, Z.: Antibacterial properties of copper and its alloys. Arch. Mater. Sci. Eng. 56(2), 53–60 (2012)
110.
go back to reference Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51(4), 427–556 (2006)CrossRef Meyers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51(4), 427–556 (2006)CrossRef
111.
go back to reference Carro, G., Muñoz, A., Monge, M.A., Savoini, B., Galatanu, A., Galatanu, M., Pareja, R.: Thermal conductivity and diffusivity of Cu-Y alloys produced by different powder metallurgy routes. Fusion Eng. Des. 124, 1156–1160 (2017)CrossRef Carro, G., Muñoz, A., Monge, M.A., Savoini, B., Galatanu, A., Galatanu, M., Pareja, R.: Thermal conductivity and diffusivity of Cu-Y alloys produced by different powder metallurgy routes. Fusion Eng. Des. 124, 1156–1160 (2017)CrossRef
112.
go back to reference Myagkov, L.L., Mahkamov, K., Chainov, N.D., Makhkamova, I.: Advanced and conventional internal combustion engine materials. In: Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, pp. 370–408e. Woodhead Publishing (2014) Myagkov, L.L., Mahkamov, K., Chainov, N.D., Makhkamova, I.: Advanced and conventional internal combustion engine materials. In: Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, pp. 370–408e. Woodhead Publishing (2014)
113.
go back to reference Mondal, S.: Aluminum or its alloy matrix hybrid nanocomposites. Met. Mater. Int. 27, 2188–2204 (2021)CrossRef Mondal, S.: Aluminum or its alloy matrix hybrid nanocomposites. Met. Mater. Int. 27, 2188–2204 (2021)CrossRef
114.
go back to reference Sayyadi, R., Khodabakhshi, F., Javid, N.S., Khatibi, G.: Influence of graphene content and nickel decoration on the microstructural and mechanical characteristics of the Cu/Sn–Ag–Cu/Cu soldered joint. J. Market. Res. 9(4), 8953–8970 (2020) Sayyadi, R., Khodabakhshi, F., Javid, N.S., Khatibi, G.: Influence of graphene content and nickel decoration on the microstructural and mechanical characteristics of the Cu/Sn–Ag–Cu/Cu soldered joint. J. Market. Res. 9(4), 8953–8970 (2020)
115.
go back to reference Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109 (2012)CrossRef Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109 (2012)CrossRef
116.
go back to reference Jester, T.C. (ed.). Twentieth-Century Building Materials: history and Conservation. Getty Publications (2014) Jester, T.C. (ed.). Twentieth-Century Building Materials: history and Conservation. Getty Publications (2014)
117.
go back to reference Thomas, P., Lai, C.W., Johan, M.R.B.: Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. J. Anal. Appl. Pyrol. 140, 54–85 (2019)CrossRef Thomas, P., Lai, C.W., Johan, M.R.B.: Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. J. Anal. Appl. Pyrol. 140, 54–85 (2019)CrossRef
Metadata
Title
Ball Milling of Copper and Zinc Alloys Followed by Their Consolidation and Application
Authors
Krutika L. Routray
Sunirmal Saha
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6504-1_12

Premium Partners