Skip to main content
Top

08-02-2025 | Technical Article

Ballistic impact response of boron carbide reinforced honeycomb core sandwich panels: a numerical simulation study

Authors: İsmail Türkdönmez, Yusuf Tansel İç, Faruk Elaldı, Fırat Soner Alıcı

Published in: International Journal on Interactive Design and Manufacturing (IJIDeM)

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Determining the most suitable sandwich panel for the selection criteria is vital for the continuity of the protection of the structures. Especially in armor designs for the protection of vehicles produced for defense against external threats, lightness, and cost factors come to the vital factors along with the strength expectations. Sandwich panels, which are employed for mitigating the dynamic effects of external forces on structures, have been produced in many different models, thicknesses, and geometries, and there are many studies in the literature about sandwich panels encompassing their design, performance, and fabrication. In this study, the penetration behavior and changes in the form of Boron Carbide (B4C) coated and uncoated models of stainless-steel surface plate sandwich panels are investigated. Numerical models were developed using CATIA 3D Modeling tools and penetration simulations were performed with 2023R2 Ansys Workbench LS-DYNA. Additional comparative analyses between B4C coated honeycomb core and polyurea coated corrugated sandwich panels from the literature were performed to evaluate the ballistic performance. The ballistic limit velocity of the B4C -coated sandwich panel was 978 m/s, nearly doubling the 527 m/s observed in polyurea-coated panels with deformable penetrators. The high hardness and fracture toughness of B4C caused significant deformation in the projectile, resulting in petal and plug failure modes. Stress redistribution across the impact zone enhanced energy absorption, improved ballistic limit velocity, and increased penetration resistance. The findings highlight B4C’s superiority in achieving lightweight, high-strength ballistic armor. In this study, the penetration behavior, and changes in the form of B4C coated and uncoated models of stainless-steel surface plate sandwich panels, which contain a core formed by combining sinusoidal trapezoidal sheet plates, are numerically investigated against ballistic impacts. The results offer insights into optimizing sandwich panel designs for varying thicknesses, core densities, and material configurations, providing a foundation for advanced protective structures in defense applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bitzer, T.: Introduction: History. In: 1st Ed., Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing, Springer-Science+Business Media, Glasgow, pp. 1–3 (1997) Bitzer, T.: Introduction: History. In: 1st Ed., Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing, Springer-Science+Business Media, Glasgow, pp. 1–3 (1997)
2.
go back to reference Zok, F.W., Waltner, S.A., Wei, Z., Rathbun, H.J., McMeeking, R.M., Evans, A.G.: A protocol for characterising the structural performance of metallic sandwich panels: application to pyramidal truss cores. Int. J. Solids Struct. 41(22–23), 6249–6271 (2004)CrossRefMATH Zok, F.W., Waltner, S.A., Wei, Z., Rathbun, H.J., McMeeking, R.M., Evans, A.G.: A protocol for characterising the structural performance of metallic sandwich panels: application to pyramidal truss cores. Int. J. Solids Struct. 41(22–23), 6249–6271 (2004)CrossRefMATH
3.
go back to reference Rathbun, H.J., Wei, Z., He, M.Y., Zok, F.W., Evans, A.G., Sypeck, D.J., Wadley, H.N.G.: Measurement and simulation of the performance of a lightweight metallic sandwich structure with a tetrahedral truss core. J. Appl. Mech. 71(3), 368–374 (2004)CrossRefMATH Rathbun, H.J., Wei, Z., He, M.Y., Zok, F.W., Evans, A.G., Sypeck, D.J., Wadley, H.N.G.: Measurement and simulation of the performance of a lightweight metallic sandwich structure with a tetrahedral truss core. J. Appl. Mech. 71(3), 368–374 (2004)CrossRefMATH
4.
go back to reference Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46(3–4), 309–327 (2001)CrossRefMATH Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46(3–4), 309–327 (2001)CrossRefMATH
5.
go back to reference Zhu, F., Lu, G., Ruan, D., Wang, Z.: Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores. Int. J. Prot. Struct. 1(4), 507–541 (2010)CrossRefMATH Zhu, F., Lu, G., Ruan, D., Wang, Z.: Plastic deformation, failure and energy absorption of sandwich structures with metallic cellular cores. Int. J. Prot. Struct. 1(4), 507–541 (2010)CrossRefMATH
6.
go back to reference Li, X., Li, G., Wang, C.H., You, M.: Minimum-weight sandwich structure optimum design subjected to torsional loading. Appl. Compos. Mater. 19(2), 117–126 (2010)CrossRefMATH Li, X., Li, G., Wang, C.H., You, M.: Minimum-weight sandwich structure optimum design subjected to torsional loading. Appl. Compos. Mater. 19(2), 117–126 (2010)CrossRefMATH
7.
go back to reference Imbalzano, G., Tran, P., Ngo, T.D., Lee, P.V.S.: Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. J. Sandwich Struct. Mater. 19(3), 291–316 (2017)CrossRef Imbalzano, G., Tran, P., Ngo, T.D., Lee, P.V.S.: Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. J. Sandwich Struct. Mater. 19(3), 291–316 (2017)CrossRef
8.
go back to reference Wang, X., Yue, Z., Xu, X., Zhao, Z., Ji, H., Zhu, M., Wan, P., Zhang, Q., Lu, T.J.: Ballistic impact response of elastomer-retrofitted corrugated core sandwich panels. Int. J. Impact Eng 175, 104545 (2023)CrossRef Wang, X., Yue, Z., Xu, X., Zhao, Z., Ji, H., Zhu, M., Wan, P., Zhang, Q., Lu, T.J.: Ballistic impact response of elastomer-retrofitted corrugated core sandwich panels. Int. J. Impact Eng 175, 104545 (2023)CrossRef
9.
go back to reference Goldsmith, W., Sackman, J.L.: An experimental study of energy absorption in impact on sandwich plates. Int. J. Impact Eng 12(2), 241–262 (1992)CrossRefMATH Goldsmith, W., Sackman, J.L.: An experimental study of energy absorption in impact on sandwich plates. Int. J. Impact Eng 12(2), 241–262 (1992)CrossRefMATH
10.
go back to reference Goldsmith, W., Wang, G.T., Li, K., Crane, D.: Perforation of cellular sandwich plates. Int. J. Impact Eng 19(5–6), 361–379 (1997)CrossRefMATH Goldsmith, W., Wang, G.T., Li, K., Crane, D.: Perforation of cellular sandwich plates. Int. J. Impact Eng 19(5–6), 361–379 (1997)CrossRefMATH
11.
go back to reference Crupi, V., Epasto, G., Guglielmino, E.: Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading. Int. J. Impact Eng 43, 6–15 (2012)CrossRef Crupi, V., Epasto, G., Guglielmino, E.: Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading. Int. J. Impact Eng 43, 6–15 (2012)CrossRef
12.
go back to reference Hoo Fatt, M.S., Park, K.S.: Perforation of honeycomb sandwich plates by projectiles. Compos. A Appl. Sci. Manuf. 31(8), 889–899 (2000)CrossRefMATH Hoo Fatt, M.S., Park, K.S.: Perforation of honeycomb sandwich plates by projectiles. Compos. A Appl. Sci. Manuf. 31(8), 889–899 (2000)CrossRefMATH
13.
go back to reference Lin, C., Hoo Fatt, M.S.: Perforation of sandwich panels with honeycomb cores by hemispherical nose projectiles. J. Sandwich Struct. Mater. 7(2), 133–172 (2005)CrossRefMATH Lin, C., Hoo Fatt, M.S.: Perforation of sandwich panels with honeycomb cores by hemispherical nose projectiles. J. Sandwich Struct. Mater. 7(2), 133–172 (2005)CrossRefMATH
14.
go back to reference Meo, M., Vignjevic, R., Marengo, G.: The response of honeycomb sandwich panels under low-velocity impact loading. Int. J. Mech. Sci. 47(9), 1301–1325 (2005)CrossRefMATH Meo, M., Vignjevic, R., Marengo, G.: The response of honeycomb sandwich panels under low-velocity impact loading. Int. J. Mech. Sci. 47(9), 1301–1325 (2005)CrossRefMATH
16.
go back to reference Rathbun, H.J., Zok, F.W., Evans, A.G.: Strength optimisation of metallic sandwich panels. Int. J. Solids Struct. 42(26), 6643–6661 (2005)CrossRefMATH Rathbun, H.J., Zok, F.W., Evans, A.G.: Strength optimisation of metallic sandwich panels. Int. J. Solids Struct. 42(26), 6643–6661 (2005)CrossRefMATH
17.
go back to reference Mohan, K., Yip, T.H., Idapalapati, S., Chen, Z.: Impact response of aluminum foam core sandwich structures. Mater. Sci. Eng. A 529, 94–101 (2011)CrossRef Mohan, K., Yip, T.H., Idapalapati, S., Chen, Z.: Impact response of aluminum foam core sandwich structures. Mater. Sci. Eng. A 529, 94–101 (2011)CrossRef
18.
go back to reference Pollien, A., Conde, Y., Pambaguian, L., Mortensen, A.: Graded opencell aluminium foam core sandwich beams. Mater. Sci. Eng. A 404(1–2), 9–18 (2005)CrossRef Pollien, A., Conde, Y., Pambaguian, L., Mortensen, A.: Graded opencell aluminium foam core sandwich beams. Mater. Sci. Eng. A 404(1–2), 9–18 (2005)CrossRef
19.
go back to reference Styles, M., Compston, P., Kalyanasundaram, S.: The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures. Compos. Struct. 80(4), 532–538 (2007)CrossRef Styles, M., Compston, P., Kalyanasundaram, S.: The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures. Compos. Struct. 80(4), 532–538 (2007)CrossRef
20.
go back to reference Giglio, M., Gilioli, A., Manes, A.: Numerical investigation of a three point bending test on sandwich panels with aluminum skins and nomex™ honeycomb core. Comput. Mater. Sci. 56, 69–78 (2012)CrossRefMATH Giglio, M., Gilioli, A., Manes, A.: Numerical investigation of a three point bending test on sandwich panels with aluminum skins and nomex™ honeycomb core. Comput. Mater. Sci. 56, 69–78 (2012)CrossRefMATH
21.
go back to reference Pascual, C., Montali, J., Overend, M.: Adhesively-bonded GFRP-glass sandwich components for structurally efficient glazing applications. Compos. Struct. 160, 560–573 (2017)CrossRef Pascual, C., Montali, J., Overend, M.: Adhesively-bonded GFRP-glass sandwich components for structurally efficient glazing applications. Compos. Struct. 160, 560–573 (2017)CrossRef
22.
go back to reference Liaghat, G.H., Nia, A.A., Daghyani, H.R., Sadighi, M.: Ballistic limit evaluation for impact of cylindrical projectiles on honeycomb panels. Thin-Walled Struct. 48(1), 55–61 (2010)CrossRef Liaghat, G.H., Nia, A.A., Daghyani, H.R., Sadighi, M.: Ballistic limit evaluation for impact of cylindrical projectiles on honeycomb panels. Thin-Walled Struct. 48(1), 55–61 (2010)CrossRef
23.
go back to reference Feli, S., Pour, M.H.N.: An analytical model for composite sandwich panels with honeycomb core subjected to highvelocity impact. Compos. B Eng. 43(5), 2439–2447 (2012)CrossRefMATH Feli, S., Pour, M.H.N.: An analytical model for composite sandwich panels with honeycomb core subjected to highvelocity impact. Compos. B Eng. 43(5), 2439–2447 (2012)CrossRefMATH
25.
go back to reference Vargas-Gonzalez, L., Speyer, R.F., Campbell, J.: Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armour ceramics. Int. J. Appl. Ceram. Technol. 7(5), 643–651 (2010)CrossRefMATH Vargas-Gonzalez, L., Speyer, R.F., Campbell, J.: Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armour ceramics. Int. J. Appl. Ceram. Technol. 7(5), 643–651 (2010)CrossRefMATH
26.
go back to reference Wilkins, M.L.: Second progress report on light armour programme, Report no. UCRL-50284, Lawrence Livermore National Laboratory, Livermore. (1967) Wilkins, M.L.: Second progress report on light armour programme, Report no. UCRL-50284, Lawrence Livermore National Laboratory, Livermore. (1967)
27.
go back to reference Orphal, D.L., Franzen, R.R., Charters, A.C., Menna, T.L., Piekutowski, A.J.: Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s. Int. J. Impact Eng 19(1), 15–29 (1997)CrossRef Orphal, D.L., Franzen, R.R., Charters, A.C., Menna, T.L., Piekutowski, A.J.: Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s. Int. J. Impact Eng 19(1), 15–29 (1997)CrossRef
28.
go back to reference Lundberg, P., Holmberg, L., Janson, B.: An experimental study of long rod penetration into boron carbide at ordnance and hypervelocities. In: Proceedings of the 17th international symposium on ballistics, Midrand, South Africa, pp. 251–258 (1998) Lundberg, P., Holmberg, L., Janson, B.: An experimental study of long rod penetration into boron carbide at ordnance and hypervelocities. In: Proceedings of the 17th international symposium on ballistics, Midrand, South Africa, pp. 251–258 (1998)
29.
go back to reference Gooch, W.A., Burkins, M.S., Hauver, G., Netherwood, P., Benck, R.: Dynamic X-ray imaging of the penetration of boron carbide. In: EURODYMAT 2000 - 6th International Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading, pp. 583–588 (2000) Gooch, W.A., Burkins, M.S., Hauver, G., Netherwood, P., Benck, R.: Dynamic X-ray imaging of the penetration of boron carbide. In: EURODYMAT 2000 - 6th International Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading, pp. 583–588 (2000)
30.
go back to reference Anderson, C.E., Burkins, M.S., Walker, J.D., Gooch, W.A.: Time resolved penetration of B4C tiles by the APM2 bullet. Comput. Model. Eng. Sci. 8(2), 91–104 (2005) Anderson, C.E., Burkins, M.S., Walker, J.D., Gooch, W.A.: Time resolved penetration of B4C tiles by the APM2 bullet. Comput. Model. Eng. Sci. 8(2), 91–104 (2005)
31.
go back to reference Johnson, G.R., Holmquist, T.J.: Response of boron carbide subjected to large strains, high strain rates, and high pressures. J. Appl. Phys. 85, 8060–8073 (1999)CrossRefMATH Johnson, G.R., Holmquist, T.J.: Response of boron carbide subjected to large strains, high strain rates, and high pressures. J. Appl. Phys. 85, 8060–8073 (1999)CrossRefMATH
32.
go back to reference Johnson, G.R., Stryk, R.S., Beissel, S.R., Holmquist T.J.: Conversion of finite elements into meshless particles for penetration computaions involving ceramic targets. In: Furnish, M.D., Thadhani, N.N., Horie, Y., (Eds.), AIP Conf. Proc. 620, pp. 1287–1290 (2002) Johnson, G.R., Stryk, R.S., Beissel, S.R., Holmquist T.J.: Conversion of finite elements into meshless particles for penetration computaions involving ceramic targets. In: Furnish, M.D., Thadhani, N.N., Horie, Y., (Eds.), AIP Conf. Proc. 620, pp. 1287–1290 (2002)
33.
go back to reference Holmquist, T.J., Johnson, G.R.: Characterisation and evaluation of boron carbide for plate-impact conditions. J. Appl. Phys. 100, 093525 (2006)CrossRefMATH Holmquist, T.J., Johnson, G.R.: Characterisation and evaluation of boron carbide for plate-impact conditions. J. Appl. Phys. 100, 093525 (2006)CrossRefMATH
34.
go back to reference Johnson, G.R., & Holmquist, T.J.: An improved computational model for brittle materials. High-Pressure Science and Technology, pp. 981–984 (1993) Johnson, G.R., & Holmquist, T.J.: An improved computational model for brittle materials. High-Pressure Science and Technology, pp. 981–984 (1993)
35.
go back to reference Johnson, G. R., and Cook, W. H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the Seventh International Symposium on Ballistics, pp. 541–547. (1983) Johnson, G. R., and Cook, W. H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the Seventh International Symposium on Ballistics, pp. 541–547. (1983)
36.
go back to reference Liu, C., Zhang, Y.X., Ye, L.: High velocity impact responses of sandwich panels with metal fibre laminate skins and aluminium foam core. Int. J. Impact Eng 100, 139–153 (2017)CrossRefMATH Liu, C., Zhang, Y.X., Ye, L.: High velocity impact responses of sandwich panels with metal fibre laminate skins and aluminium foam core. Int. J. Impact Eng 100, 139–153 (2017)CrossRefMATH
37.
go back to reference Shokrieh, M.M., Javadpour, G.H.: Penetration analysis of a projectile in ceramic composite armour. Compos. Struct. 82(2), 269–276 (2008)CrossRefMATH Shokrieh, M.M., Javadpour, G.H.: Penetration analysis of a projectile in ceramic composite armour. Compos. Struct. 82(2), 269–276 (2008)CrossRefMATH
38.
go back to reference Grady, D. E., Moody, R. L.: Shock compression profiles in ceramics, Report No. SAND96–0551, Sandia National Laboratories, TN. (1996) Grady, D. E., Moody, R. L.: Shock compression profiles in ceramics, Report No. SAND96–0551, Sandia National Laboratories, TN. (1996)
39.
go back to reference Khaledi, H., Rostamiyan, Y.: Assessment of high-velocity impact effects on carbon fiber reinforced polymer sandwich panel with M-shaped core reinforced by nano-SiO2: experimental and numerical study. Proc. Inst. Mech. Eng. Part L: J. Mater. Design Appl. 237, 183–197 (2022)MATH Khaledi, H., Rostamiyan, Y.: Assessment of high-velocity impact effects on carbon fiber reinforced polymer sandwich panel with M-shaped core reinforced by nano-SiO2: experimental and numerical study. Proc. Inst. Mech. Eng. Part L: J. Mater. Design Appl. 237, 183–197 (2022)MATH
40.
go back to reference Liu, J., Wang, G., Lei, Z.: Comparisons on the local impact response of sandwich panels with in-plane and out-of-plane honeycomb cores. Sustainability 15(4), 3437 (2023)CrossRefMATH Liu, J., Wang, G., Lei, Z.: Comparisons on the local impact response of sandwich panels with in-plane and out-of-plane honeycomb cores. Sustainability 15(4), 3437 (2023)CrossRefMATH
41.
go back to reference Bilgin, M., Usta, F., Türkmen, H., Yolum, U.: High-velocity impact responses of composite sandwich panels with honeycomb core by using experimental and numerical methods, In: 2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST), pp. 1–6, (2023) https://doi.org/10.1109/RAST57548.2023.10197951 Bilgin, M., Usta, F., Türkmen, H., Yolum, U.: High-velocity impact responses of composite sandwich panels with honeycomb core by using experimental and numerical methods, In: 2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST), pp. 1–6, (2023) https://​doi.​org/​10.​1109/​RAST57548.​2023.​10197951
42.
go back to reference Haq, A., Narala, S.: High-velocity impact performance of sandwich panels with additively manufactured hierarchical honeycomb cores: An experimental and numerical study. J. Sandwich Struct. Mater. 26, 524–544 (2024)CrossRefMATH Haq, A., Narala, S.: High-velocity impact performance of sandwich panels with additively manufactured hierarchical honeycomb cores: An experimental and numerical study. J. Sandwich Struct. Mater. 26, 524–544 (2024)CrossRefMATH
43.
go back to reference Maher, R., Khalili, S., Eslami-Farsani, R.: Experimental analysis of corrugated core sandwich panel with smart composite face-sheets under high-velocity impact. J. Compos. Mater. 56, 1495–1511 (2022)CrossRef Maher, R., Khalili, S., Eslami-Farsani, R.: Experimental analysis of corrugated core sandwich panel with smart composite face-sheets under high-velocity impact. J. Compos. Mater. 56, 1495–1511 (2022)CrossRef
44.
go back to reference Li, S., Zhang, Y.: Experimental and numerical study on the dynamic response of aluminum alloy wood sandwich panels under high-velocity impact. Adv. Mech. Eng. 15(5), 168781322311757 (2023)CrossRef Li, S., Zhang, Y.: Experimental and numerical study on the dynamic response of aluminum alloy wood sandwich panels under high-velocity impact. Adv. Mech. Eng. 15(5), 168781322311757 (2023)CrossRef
46.
go back to reference Warren, J., Cole, M., Offenberger, S., Kota, K., Lacy, T., Toghiani, H., Burchell, M., Kundu, S., Pittman, C.: Hypervelocity impacts on honeycomb core sandwich panels filled with shear thickening fluid. Int. J. Impact Eng 150, 103803 (2021)CrossRef Warren, J., Cole, M., Offenberger, S., Kota, K., Lacy, T., Toghiani, H., Burchell, M., Kundu, S., Pittman, C.: Hypervelocity impacts on honeycomb core sandwich panels filled with shear thickening fluid. Int. J. Impact Eng 150, 103803 (2021)CrossRef
48.
go back to reference Guo, J., He, Q., Li, L., Zhu, J., Yan, D.: Ballistic resistance of a novel re-entrant auxetic honeycomb under in-plane high-velocity impact. J. Compos. Mater. 58, 1031–1049 (2024)CrossRefMATH Guo, J., He, Q., Li, L., Zhu, J., Yan, D.: Ballistic resistance of a novel re-entrant auxetic honeycomb under in-plane high-velocity impact. J. Compos. Mater. 58, 1031–1049 (2024)CrossRefMATH
50.
go back to reference Adin, H., Adin, M.Ş: Numerical analysis of damaged helical gear wheel. Batman Univ. J. Life Sci. 11(1), 43–56 (2021)MathSciNetMATH Adin, H., Adin, M.Ş: Numerical analysis of damaged helical gear wheel. Batman Univ. J. Life Sci. 11(1), 43–56 (2021)MathSciNetMATH
51.
go back to reference Adin, M.Ş, Adin, H., Ergün, R.K.: Finite element analysis of safety pin in snowplow equipment. Eur. J. Tech. 12(1), 89–92 (2022)MATH Adin, M.Ş, Adin, H., Ergün, R.K.: Finite element analysis of safety pin in snowplow equipment. Eur. J. Tech. 12(1), 89–92 (2022)MATH
Metadata
Title
Ballistic impact response of boron carbide reinforced honeycomb core sandwich panels: a numerical simulation study
Authors
İsmail Türkdönmez
Yusuf Tansel İç
Faruk Elaldı
Fırat Soner Alıcı
Publication date
08-02-2025
Publisher
Springer Paris
Published in
International Journal on Interactive Design and Manufacturing (IJIDeM)
Print ISSN: 1955-2513
Electronic ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-025-02245-2

Premium Partner