Skip to main content
Top
Published in: Acta Mechanica Sinica 1/2019

10-08-2018 | Research Paper

Band gap analysis of periodic structures based on cell experimental frequency response functions (FRFs)

Authors: Li-Jie Wu, Han-Wen Song

Published in: Acta Mechanica Sinica | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An approach is proposed to estimate the transfer function of the periodic structure, which is known as an absorber due to its repetitive cells leading to the band gap phenomenon. The band gap is a frequency range in which vibration will be inhibited. A transfer function is usually performed to gain band gap. Previous scholars regard estimation of the transfer function as a forward problem assuming known cell mass and stiffness matrices. However, the estimation of band gap for irregular or complicated cells is hardly accurate because it is difficult to model the cell exactly. Therefore, we treat the estimation as an inverse problem by employing modal identification and curve fitting. A transfer matrix is then established by parameters identified through modal analysis. Both simulations and experiments have been performed. Some interesting conclusions about the relationship between modal parameters and band gap have been achieved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photoniccrystals. Princeton University Press, Princeton (1995) Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photoniccrystals. Princeton University Press, Princeton (1995)
2.
go back to reference Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)CrossRef Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)CrossRef
3.
go back to reference John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)CrossRef John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)CrossRef
4.
go back to reference Wang, Y.Z., Li, F.M., Kishimoto, K.: Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress. Eur. J. Mech. 29, 182–189 (2010)CrossRef Wang, Y.Z., Li, F.M., Kishimoto, K.: Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress. Eur. J. Mech. 29, 182–189 (2010)CrossRef
5.
go back to reference Wang, Y.Z., Li, F.M., Kishimoto, K., et al.: Wave band gaps in three-dimensional periodic piezoelectric structures. Mech. Res. Commun. 36, 461–468 (2009)CrossRefMATH Wang, Y.Z., Li, F.M., Kishimoto, K., et al.: Wave band gaps in three-dimensional periodic piezoelectric structures. Mech. Res. Commun. 36, 461–468 (2009)CrossRefMATH
6.
go back to reference Yan, Z.Z., Wang, Y.S.: Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Phys. Rev. B 74, 224303 (2006)CrossRef Yan, Z.Z., Wang, Y.S.: Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Phys. Rev. B 74, 224303 (2006)CrossRef
7.
go back to reference Yan, Z.Z., Wang, Y.S.: Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method. Phys. Rev. B 78, 094306 (2008)CrossRef Yan, Z.Z., Wang, Y.S.: Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method. Phys. Rev. B 78, 094306 (2008)CrossRef
8.
go back to reference Casadei, F., Rimoli, J.J., Ruzzene, M.: Multiscale finite element analysis of wave propagation in periodic solids. Finite Elem. Anal. Des. 108, 81–95 (2016)CrossRefMATH Casadei, F., Rimoli, J.J., Ruzzene, M.: Multiscale finite element analysis of wave propagation in periodic solids. Finite Elem. Anal. Des. 108, 81–95 (2016)CrossRefMATH
9.
go back to reference Bardi, I., Peng, G., Petersson, L.E.R.: Modeling periodic layered structures by shell elements using the finite-element method. IEEE Trans. Magn. 52, 1–4 (2016)CrossRef Bardi, I., Peng, G., Petersson, L.E.R.: Modeling periodic layered structures by shell elements using the finite-element method. IEEE Trans. Magn. 52, 1–4 (2016)CrossRef
10.
go back to reference Ozaki, S., Hinata, K., Senatore, C., et al.: Finite element analysis of periodic ripple formation under rigid wheels. J. Terramech. 61, 11–22 (2015)CrossRef Ozaki, S., Hinata, K., Senatore, C., et al.: Finite element analysis of periodic ripple formation under rigid wheels. J. Terramech. 61, 11–22 (2015)CrossRef
11.
go back to reference Zhang, Y., Shang, S., Liu, S.: A novel implementation algorithm of asymptotic homogenization for predicting the effective coefficient of thermal expansion of periodic composite materials. Acta. Mech. Sin. 33, 368–381 (2017)MathSciNetCrossRefMATH Zhang, Y., Shang, S., Liu, S.: A novel implementation algorithm of asymptotic homogenization for predicting the effective coefficient of thermal expansion of periodic composite materials. Acta. Mech. Sin. 33, 368–381 (2017)MathSciNetCrossRefMATH
12.
go back to reference Wu, Z.J., Li, F.M., Zhang, C.: Vibration band-gap properties of three-dimensional kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)CrossRef Wu, Z.J., Li, F.M., Zhang, C.: Vibration band-gap properties of three-dimensional kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)CrossRef
13.
go back to reference Wu, Z.J., Li, F.M., Wang, Y.Z.: Vibration band gap behaviors of sandwich panels with corrugated cores. Comput. Struct. 129, 30–39 (2013)CrossRef Wu, Z.J., Li, F.M., Wang, Y.Z.: Vibration band gap behaviors of sandwich panels with corrugated cores. Comput. Struct. 129, 30–39 (2013)CrossRef
14.
go back to reference Wen, S.R., Wu, Z.J., Lu, N.L.: High-precision solution to the moving load problem using an improved spectral element method. Acta Mech. Sin. 34, 68–81 (2018)MathSciNetCrossRefMATH Wen, S.R., Wu, Z.J., Lu, N.L.: High-precision solution to the moving load problem using an improved spectral element method. Acta Mech. Sin. 34, 68–81 (2018)MathSciNetCrossRefMATH
15.
go back to reference Mead, D.J.: Wave propagation in continuous periodic structures: research contributions from southampton. J. Sound Vib. 190, 495–524 (1996)CrossRef Mead, D.J.: Wave propagation in continuous periodic structures: research contributions from southampton. J. Sound Vib. 190, 495–524 (1996)CrossRef
16.
go back to reference Gupta, G.S.: Natural frequencies of periodic skin-stringer structures using a wave approach. J. Sound Vib. 16, 567–580 (1971)CrossRef Gupta, G.S.: Natural frequencies of periodic skin-stringer structures using a wave approach. J. Sound Vib. 16, 567–580 (1971)CrossRef
17.
go back to reference Gupta, G.S.: Dynamics of Periodically Stiffened Structures Using a Wave Approach. University of Southampton, Southampton (1970) Gupta, G.S.: Dynamics of Periodically Stiffened Structures Using a Wave Approach. University of Southampton, Southampton (1970)
18.
go back to reference Lin, Y.K., McDaniel, T.J.: Dynamics of beam-type periodic structures. J. Eng. Ind. 91, 1133 (1969)CrossRef Lin, Y.K., McDaniel, T.J.: Dynamics of beam-type periodic structures. J. Eng. Ind. 91, 1133 (1969)CrossRef
19.
go back to reference Ruzzene, M., Tsopelas, P.: Control of wave propagation in sandwich plate rows with periodic honeycomb core. J. Eng. Mech. 129, 975–986 (2003)CrossRef Ruzzene, M., Tsopelas, P.: Control of wave propagation in sandwich plate rows with periodic honeycomb core. J. Eng. Mech. 129, 975–986 (2003)CrossRef
20.
go back to reference Richards, D., Pines, D.J.: Passive reduction of gear mesh vibration using a periodic drive shaft. J. Sound Vib. 264, 317–342 (2003)CrossRef Richards, D., Pines, D.J.: Passive reduction of gear mesh vibration using a periodic drive shaft. J. Sound Vib. 264, 317–342 (2003)CrossRef
21.
go back to reference Wang, Y.Z., Li, F.M., Huang, W.H., et al.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)CrossRefMATH Wang, Y.Z., Li, F.M., Huang, W.H., et al.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)CrossRefMATH
22.
go back to reference Wang, Y.Z., Li, F.M., Wang, Y.S.: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. Int. J. Mech. Sci. 106, 357–362 (2016)CrossRef Wang, Y.Z., Li, F.M., Wang, Y.S.: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. Int. J. Mech. Sci. 106, 357–362 (2016)CrossRef
23.
go back to reference Wang, Y.Z., Wang, Y.S.: Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion 78, 1–8 (2018)MathSciNetCrossRef Wang, Y.Z., Wang, Y.S.: Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion 78, 1–8 (2018)MathSciNetCrossRef
24.
go back to reference Waki, Y.: On the Application of Finite Element Analysis to Wave Motion in One-Dimensional Waveguides. University of Southampton, Southampton (2007) Waki, Y.: On the Application of Finite Element Analysis to Wave Motion in One-Dimensional Waveguides. University of Southampton, Southampton (2007)
25.
go back to reference Mace, B.R., Duhamel, D., Brennan, M.J., et al.: Finite element prediction of wave motion in structural waveguides. J. Acoust. Soc. Am. 117, 2835–2843 (2005)CrossRef Mace, B.R., Duhamel, D., Brennan, M.J., et al.: Finite element prediction of wave motion in structural waveguides. J. Acoust. Soc. Am. 117, 2835–2843 (2005)CrossRef
26.
go back to reference Duhamel, D., Mace, B.R., Brennan, M.J.: Finite element analysis of the vibrations of waveguides and periodic structures. J. Sound Vib. 294, 205–220 (2006)CrossRef Duhamel, D., Mace, B.R., Brennan, M.J.: Finite element analysis of the vibrations of waveguides and periodic structures. J. Sound Vib. 294, 205–220 (2006)CrossRef
27.
go back to reference Zhong, W.X., Williams, F.W.: On the direct solution of wave propagation for repetitive structures. J. Sound Vib. 181, 485–501 (1995)CrossRef Zhong, W.X., Williams, F.W.: On the direct solution of wave propagation for repetitive structures. J. Sound Vib. 181, 485–501 (1995)CrossRef
28.
go back to reference Zhong, W.X., Williams, F.W., Leung, A.Y.T.: Symplectic analysis for periodical electro-magnetic waveguides. J. Sound Vib. 267, 227–244 (2003)CrossRef Zhong, W.X., Williams, F.W., Leung, A.Y.T.: Symplectic analysis for periodical electro-magnetic waveguides. J. Sound Vib. 267, 227–244 (2003)CrossRef
29.
go back to reference Hendrickx, W., Dhaene, T.: A discussion of “Rational approximation of frequency domain responses by vector fitting”. IEEE Trans. Power Syst. 21, 441–443 (2006)CrossRef Hendrickx, W., Dhaene, T.: A discussion of “Rational approximation of frequency domain responses by vector fitting”. IEEE Trans. Power Syst. 21, 441–443 (2006)CrossRef
30.
go back to reference Gustavsen, B.: Relaxed vector fitting algorithm for rational approximation of frequency domain responses. In: IEEE Workshop on Signal Propagation on Interconnects, Berlin, Germany (2006) Gustavsen, B.: Relaxed vector fitting algorithm for rational approximation of frequency domain responses. In: IEEE Workshop on Signal Propagation on Interconnects, Berlin, Germany (2006)
31.
go back to reference Gustavsen, B., Semlyen, A.: Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 14, 1052–1061 (1999)CrossRef Gustavsen, B., Semlyen, A.: Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 14, 1052–1061 (1999)CrossRef
32.
go back to reference Jensen, J.S.: Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J. Sound Vib. 266, 1053–1078 (2003)CrossRef Jensen, J.S.: Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J. Sound Vib. 266, 1053–1078 (2003)CrossRef
33.
go back to reference Cremer, L., Heckl, M., Petersson, B.A.T.: Structure Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, 3rd edn. Springer, Berlin (2005)CrossRef Cremer, L., Heckl, M., Petersson, B.A.T.: Structure Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, 3rd edn. Springer, Berlin (2005)CrossRef
Metadata
Title
Band gap analysis of periodic structures based on cell experimental frequency response functions (FRFs)
Authors
Li-Jie Wu
Han-Wen Song
Publication date
10-08-2018
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 1/2019
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0781-0

Other articles of this Issue 1/2019

Acta Mechanica Sinica 1/2019 Go to the issue

Premium Partners