Skip to main content
Top
Published in:

25-09-2023

Bandstructure and quantum transport properties of AGNR unit cells with V-shaped edge patterning

Authors: Bikramjit Basumatary, Agile Mathew

Published in: Journal of Computational Electronics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We investigate how the electronic and transport properties of six arm-chair graphene nanoribbon-based structures are modified with the introduction of symmetrical and asymmetrical geometrical V-cuts on their edges. A tight-binding model based on numerical non-equilibrium Green’s function method is used to compute the transport properties such as local density of states, transmission and current–voltage characteristics. We report the existence of nearly flat mid-bands for certain topologies after edge patterning. These bands give rise to non-zero transmission at low bias voltages. We uncover how this transmission varies with width, length, and biasing of the channel and also the temperature of the contacts. For structures in which flat mid-bands are absent, we show how their band gaps could be tuned by varying the width and length of the modified unit cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.-E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.-E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
2.
go back to reference Chung, H.-C., Chang, C.-P., Lin, C.-Y., Lin, M.-F.: Electronic and optical properties of graphene nanoribbons in external fields. Phys. Chem. Chem. Phys. 18(11), 7573–7616 (2016)CrossRef Chung, H.-C., Chang, C.-P., Lin, C.-Y., Lin, M.-F.: Electronic and optical properties of graphene nanoribbons in external fields. Phys. Chem. Chem. Phys. 18(11), 7573–7616 (2016)CrossRef
3.
go back to reference Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K.: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Japan 65(7), 1920–1923 (1996)CrossRef Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K.: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Japan 65(7), 1920–1923 (1996)CrossRef
4.
go back to reference Jiang, D.-E., Sumpter, B.G., Dai, S.: Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126(13), 134701 (2007)CrossRef Jiang, D.-E., Sumpter, B.G., Dai, S.: Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126(13), 134701 (2007)CrossRef
5.
go back to reference Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)CrossRef Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)CrossRef
6.
go back to reference Deifallah, M., McMillan, P.F., Cora, F.: Electronic and structural properties of two-dimensional carbon nitride graphenes. J. Phys. Chem. C 112(14), 5447–5453 (2008)CrossRef Deifallah, M., McMillan, P.F., Cora, F.: Electronic and structural properties of two-dimensional carbon nitride graphenes. J. Phys. Chem. C 112(14), 5447–5453 (2008)CrossRef
7.
go back to reference Martins, T., Miwa, R.D., Da Silva, A.J., Fazzio, A.: Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98(19), 196803 (2007)CrossRef Martins, T., Miwa, R.D., Da Silva, A.J., Fazzio, A.: Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98(19), 196803 (2007)CrossRef
8.
go back to reference Biel, B., Blase, X., Triozon, F., Roche, S.: Anomalous doping effects on charge transport in graphene nanoribbons. Phys. Rev. Lett. 102(9), 096803 (2009)CrossRef Biel, B., Blase, X., Triozon, F., Roche, S.: Anomalous doping effects on charge transport in graphene nanoribbons. Phys. Rev. Lett. 102(9), 096803 (2009)CrossRef
9.
go back to reference Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009)CrossRef Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009)CrossRef
10.
go back to reference Ali, M., Khan, S., Awwad, F., Tit, N.: High gas-sensing selectivity of bilaterally edge-doped graphene nano-ribbons towards detecting no2, o2 and so3 gas molecules: ab-initio investigation. Appl. Surf. Sci. 514, 145866 (2020)CrossRef Ali, M., Khan, S., Awwad, F., Tit, N.: High gas-sensing selectivity of bilaterally edge-doped graphene nano-ribbons towards detecting no2, o2 and so3 gas molecules: ab-initio investigation. Appl. Surf. Sci. 514, 145866 (2020)CrossRef
11.
go back to reference Cho, K.M., Cho, S.-Y., Chong, S., Koh, H.-J., Kim, D.W., Kim, J., Jung, H.-T.: Edge-functionalized graphene nanoribbon chemical sensor: comparison with carbon nanotube and graphene. ACS Appl. Mater. Interfaces 10(49), 42905–42914 (2018)CrossRef Cho, K.M., Cho, S.-Y., Chong, S., Koh, H.-J., Kim, D.W., Kim, J., Jung, H.-T.: Edge-functionalized graphene nanoribbon chemical sensor: comparison with carbon nanotube and graphene. ACS Appl. Mater. Interfaces 10(49), 42905–42914 (2018)CrossRef
12.
go back to reference Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRef
13.
go back to reference Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)CrossRef Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)CrossRef
14.
go back to reference Sun, L., Li, Q., Ren, H., Su, H., Shi, Q., Yang, J.: Strain effect on electronic structures of graphene nanoribbons: a first-principles study. J. Chem. Phys. 129(7), 074704 (2008)CrossRef Sun, L., Li, Q., Ren, H., Su, H., Shi, Q., Yang, J.: Strain effect on electronic structures of graphene nanoribbons: a first-principles study. J. Chem. Phys. 129(7), 074704 (2008)CrossRef
15.
go back to reference Li, Y., Jiang, X., Liu, Z., Liu, Z.: Strain effects in graphene and graphene nanoribbons: the underlying mechanism. Nano Res. 3(8), 545–556 (2010)CrossRef Li, Y., Jiang, X., Liu, Z., Liu, Z.: Strain effects in graphene and graphene nanoribbons: the underlying mechanism. Nano Res. 3(8), 545–556 (2010)CrossRef
16.
go back to reference Rosales, L., Pacheco, M., Barticevic, Z., León, A., Latgé, A., Orellana, P.: Transport properties of antidot superlattices of graphene nanoribbons. Phys. Rev. B 80(7), 073402 (2009)CrossRef Rosales, L., Pacheco, M., Barticevic, Z., León, A., Latgé, A., Orellana, P.: Transport properties of antidot superlattices of graphene nanoribbons. Phys. Rev. B 80(7), 073402 (2009)CrossRef
17.
go back to reference Zoghi, M., Goharrizi, A.Y., Saremi, M.: Band gap tuning of armchair graphene nanoribbons by using antidotes. J. Electron. Mater. 46(1), 340–346 (2017)CrossRef Zoghi, M., Goharrizi, A.Y., Saremi, M.: Band gap tuning of armchair graphene nanoribbons by using antidotes. J. Electron. Mater. 46(1), 340–346 (2017)CrossRef
18.
go back to reference Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54(24), 17954 (1996)CrossRef Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54(24), 17954 (1996)CrossRef
19.
go back to reference Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Tour, J.M., Zettl, A., Louie, S.G., et al.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7(8), 616–620 (2011)CrossRef Tao, C., Jiao, L., Yazyev, O.V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R.B., Tour, J.M., Zettl, A., Louie, S.G., et al.: Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7(8), 616–620 (2011)CrossRef
20.
go back to reference Ruffieux, P., Wang, S., Yang, B., Sánchez-Sánchez, C., Liu, J., Dienel, T., Talirz, L., Shinde, P., Pignedoli, C.A., Passerone, D., et al.: On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531(7595), 489–492 (2016)CrossRef Ruffieux, P., Wang, S., Yang, B., Sánchez-Sánchez, C., Liu, J., Dienel, T., Talirz, L., Shinde, P., Pignedoli, C.A., Passerone, D., et al.: On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531(7595), 489–492 (2016)CrossRef
21.
go back to reference Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., et al.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305), 470–473 (2010)CrossRef Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., et al.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305), 470–473 (2010)CrossRef
22.
go back to reference Goharrizi, A.Y., Zoghi, M., Saremi, M.: Armchair graphene nanoribbon resonant tunneling diodes using antidote and BN doping. IEEE Trans. Electron Devices 63(9), 3761–3768 (2016)CrossRef Goharrizi, A.Y., Zoghi, M., Saremi, M.: Armchair graphene nanoribbon resonant tunneling diodes using antidote and BN doping. IEEE Trans. Electron Devices 63(9), 3761–3768 (2016)CrossRef
23.
go back to reference Zoghi, M., Goharrizi, A.Y.: Strain-induced armchair graphene nanoribbon resonant-tunneling diodes. IEEE Trans. Electron Devices 64(10), 4322–4326 (2017)CrossRef Zoghi, M., Goharrizi, A.Y.: Strain-induced armchair graphene nanoribbon resonant-tunneling diodes. IEEE Trans. Electron Devices 64(10), 4322–4326 (2017)CrossRef
24.
go back to reference Teong, H., Lam, K.-T., Khalid, S.B., Liang, G.: Shape effects in graphene nanoribbon resonant tunneling diodes: a computational study. J. Appl. Phys. 105(8), 084317 (2009)CrossRef Teong, H., Lam, K.-T., Khalid, S.B., Liang, G.: Shape effects in graphene nanoribbon resonant tunneling diodes: a computational study. J. Appl. Phys. 105(8), 084317 (2009)CrossRef
25.
go back to reference Ma, C., Xiao, Z., Huang, J., Liang, L., Lu, W., Hong, K., Sumpter, B.G., Bernholc, J., Li, A.-P.: Direct writing of heterostructures in single atomically precise graphene nanoribbons. Phys. Rev. Mater. 3(1), 016001 (2019)CrossRef Ma, C., Xiao, Z., Huang, J., Liang, L., Lu, W., Hong, K., Sumpter, B.G., Bernholc, J., Li, A.-P.: Direct writing of heterostructures in single atomically precise graphene nanoribbons. Phys. Rev. Mater. 3(1), 016001 (2019)CrossRef
26.
go back to reference Jaskólski, W., Ayuela, A., Pelc, M., Santos, H., Chico, L.: Edge states and flat bands in graphene nanoribbons with arbitrary geometries. Phys. Rev. B 83(23), 235424 (2011)CrossRef Jaskólski, W., Ayuela, A., Pelc, M., Santos, H., Chico, L.: Edge states and flat bands in graphene nanoribbons with arbitrary geometries. Phys. Rev. B 83(23), 235424 (2011)CrossRef
27.
go back to reference Akhmerov, A., Beenakker, C.: Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77(8), 085423 (2008)CrossRef Akhmerov, A., Beenakker, C.: Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77(8), 085423 (2008)CrossRef
28.
go back to reference Saroka, V., Batrakov, K., Chernozatonskii, L.: Edge-modified zigzag-shaped graphene nanoribbons: structure and electronic properties. Phys. Solid State 56(10), 2135–2145 (2014)CrossRef Saroka, V., Batrakov, K., Chernozatonskii, L.: Edge-modified zigzag-shaped graphene nanoribbons: structure and electronic properties. Phys. Solid State 56(10), 2135–2145 (2014)CrossRef
29.
go back to reference Ahmed Masum, T., Hasan, B.R., Helaly, N.M., Azim, A., Alam, M.: Comparison of transport of edge states in 2d hexagonal lattice metallic, semiconducting and topological insulator nanoribbons. J. Comput. Electron. 20(1), 116–125 (2021)CrossRef Ahmed Masum, T., Hasan, B.R., Helaly, N.M., Azim, A., Alam, M.: Comparison of transport of edge states in 2d hexagonal lattice metallic, semiconducting and topological insulator nanoribbons. J. Comput. Electron. 20(1), 116–125 (2021)CrossRef
30.
go back to reference Tran, V.-T., Saint-Martin, J., Dollfus, P., Volz, S.: Third nearest neighbor parameterized tight binding model for graphene nano-ribbons. AIP Adv. 7(7), 075212 (2017)CrossRef Tran, V.-T., Saint-Martin, J., Dollfus, P., Volz, S.: Third nearest neighbor parameterized tight binding model for graphene nano-ribbons. AIP Adv. 7(7), 075212 (2017)CrossRef
31.
go back to reference Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRefMATH Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRefMATH
32.
go back to reference Datta, S.: Nanoscale device modeling: the green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)CrossRef Datta, S.: Nanoscale device modeling: the green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)CrossRef
33.
go back to reference Datta, S.: Lessons from Nanoelectronics: A New Perspective on Transport-Part B: Quantum Transport. World Scientific, Singapore (2018)CrossRef Datta, S.: Lessons from Nanoelectronics: A New Perspective on Transport-Part B: Quantum Transport. World Scientific, Singapore (2018)CrossRef
34.
go back to reference Hancock, Y., Uppstu, A., Saloriutta, K., Harju, A., Puska, M.J.: Generalized tight-binding transport model for graphene nanoribbon-based systems. Phys. Rev. B 81(24), 245402 (2010)CrossRef Hancock, Y., Uppstu, A., Saloriutta, K., Harju, A., Puska, M.J.: Generalized tight-binding transport model for graphene nanoribbon-based systems. Phys. Rev. B 81(24), 245402 (2010)CrossRef
35.
go back to reference Chin, S.-K., Lam, K.-T., Seah, D., Liang, G.: Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding \(\pi\)-bond model. Nanoscale Res. Lett. 7(1), 1–7 (2012)CrossRef Chin, S.-K., Lam, K.-T., Seah, D., Liang, G.: Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding \(\pi\)-bond model. Nanoscale Res. Lett. 7(1), 1–7 (2012)CrossRef
36.
go back to reference Gunlycke, D., Lawler, H., White, C.: Room-temperature ballistic transport in narrow graphene strips. Phys. Rev. B 75(8), 085418 (2007)CrossRef Gunlycke, D., Lawler, H., White, C.: Room-temperature ballistic transport in narrow graphene strips. Phys. Rev. B 75(8), 085418 (2007)CrossRef
Metadata
Title
Bandstructure and quantum transport properties of AGNR unit cells with V-shaped edge patterning
Authors
Bikramjit Basumatary
Agile Mathew
Publication date
25-09-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 6/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02096-8