Skip to main content
Top

2015 | OriginalPaper | Chapter

5. Basic Analog Circuit Building Blocks Using CCs and Application of CCs in Impedance Synthesis

Authors : Raj Senani, D. R. Bhaskar, A. K. Singh

Published in: Current Conveyors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter discusses basic functional circuits realizable using CCI and CCII of the normal kind. This includes constant bandwidth variable gain voltage amplifiers, current-mode op-amp, integrators, differentiators, instrumentation amplifiers, summers, impedance converters/inverters, simulated inductors and FDNRs (in both grounded and floating forms) and a generalized function generator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The first author (RS) cannot resist commenting that the facts that a composite connection of two CCs can be used to realize a fully floating four-terminal-floating-nullor (FTFN) and that FTFNs make it possible to convert an op-amp-based grounded impedance network into a floating impedance simulation network systematically were first proposed explicitly in references [145] and [146]. Both of these ideas, now looking backwards in time, might appear simple and obvious, but were not well-understood or well-recognized in the open technical literature till then.
 
2
A careful re-check of the circuit, however, reveals that this assertion is not correct.
 
Literature
1.
go back to reference Antoniou A (1969) Realisation of gyrators using operational amplifiers and their use in RC-active network synthesis. Proc IEE 116:1838–1850 Antoniou A (1969) Realisation of gyrators using operational amplifiers and their use in RC-active network synthesis. Proc IEE 116:1838–1850
2.
go back to reference Dutta Roy SC (1974) A circuit for floating inductance simulation. Proc IEEE 64:521–523 Dutta Roy SC (1974) A circuit for floating inductance simulation. Proc IEEE 64:521–523
3.
go back to reference Wise DR (1974) Active simulation of floating lossy inductances. Proc IEE 121:85–87 Wise DR (1974) Active simulation of floating lossy inductances. Proc IEE 121:85–87
4.
go back to reference Soliman AM (1976) Generalized immittance inverters and their realizations. Int J Electron 41:59–64 Soliman AM (1976) Generalized immittance inverters and their realizations. Int J Electron 41:59–64
5.
go back to reference Nandi R (1976) Inductor simulation using a current conveyor. Proc Lett 65:1511–1512 Nandi R (1976) Inductor simulation using a current conveyor. Proc Lett 65:1511–1512
6.
go back to reference Glover J (1976) Lossless ungrounded inductor realisation. Electron Lett 12:171–173 Glover J (1976) Lossless ungrounded inductor realisation. Electron Lett 12:171–173
7.
go back to reference The LQ, Yanagisawa T (1977) Some new lossless floating inductance circuits. Proc IEEE 65:1071–1072 The LQ, Yanagisawa T (1977) Some new lossless floating inductance circuits. Proc IEEE 65:1071–1072
8.
go back to reference Sudo S, Teramoto M (1977) Constitution of floating inductance using operational amplifiers. IEICE Trans E60:185–186 Sudo S, Teramoto M (1977) Constitution of floating inductance using operational amplifiers. IEICE Trans E60:185–186
9.
go back to reference Soliman AM (1978) New active-gyrator circuit using a single current conveyor. Proc IEEE 66:1580–1581 Soliman AM (1978) New active-gyrator circuit using a single current conveyor. Proc IEEE 66:1580–1581
10.
go back to reference Soliman AM (1978) Ford-girling equivalent circuit using CCII. Electron Lett 14:721–722 Soliman AM (1978) Ford-girling equivalent circuit using CCII. Electron Lett 14:721–722
11.
go back to reference Senani R, Tiwari RN (1978) New canonic active RC realizations of grounded and floating inductors. Proc IEEE 66:803–804 Senani R, Tiwari RN (1978) New canonic active RC realizations of grounded and floating inductors. Proc IEEE 66:803–804
12.
go back to reference Nandi R (1978) Active inductances using current conveyors and their application in a simple band pass filter realization. Electron Lett 14:373–375 Nandi R (1978) Active inductances using current conveyors and their application in a simple band pass filter realization. Electron Lett 14:373–375
13.
go back to reference Senani R (1978) Active simulation of inductors using current conveyor. Electron Lett 14:483–484 Senani R (1978) Active simulation of inductors using current conveyor. Electron Lett 14:483–484
14.
go back to reference Senani R (1979) (Comment) Active simulation of inductors using current conveyor. Electron Lett 15:112–114 Senani R (1979) (Comment) Active simulation of inductors using current conveyor. Electron Lett 15:112–114
15.
go back to reference Nandi R (1979) A new equal-valued grounded-capacitor resonator realization using current conveyor. Proc IEEE 67:370–371MathSciNet Nandi R (1979) A new equal-valued grounded-capacitor resonator realization using current conveyor. Proc IEEE 67:370–371MathSciNet
16.
go back to reference Senani R (1979) Novel active RC circuit for floating-inductor simulation. Electron Lett 15:679–680 Senani R (1979) Novel active RC circuit for floating-inductor simulation. Electron Lett 15:679–680
17.
go back to reference Nandi R (1979) Insensitive grounded-capacitor simulation of grounded inductors using current conveyors. Electron Lett 15:693–694 Nandi R (1979) Insensitive grounded-capacitor simulation of grounded inductors using current conveyors. Electron Lett 15:693–694
18.
go back to reference Pookaiyaudom S, Srisarakham W (1979) Realization of stable current controllable frequency-dependent positive resistance. Proc IEEE 67:1660–1662 Pookaiyaudom S, Srisarakham W (1979) Realization of stable current controllable frequency-dependent positive resistance. Proc IEEE 67:1660–1662
19.
go back to reference Singh V (1979) A new active–RC circuit realization of floating inductance. Proc IEEE 67:1659–1660 Singh V (1979) A new active–RC circuit realization of floating inductance. Proc IEEE 67:1659–1660
20.
go back to reference Singh V (1979) Realization of floating inductance using current conveyor. Proc IEEE 67:1573–1574 Singh V (1979) Realization of floating inductance using current conveyor. Proc IEEE 67:1573–1574
21.
go back to reference Rathore TS, Singh BM (1979) Simulation of RL impedances suitable for micro-miniaturization. Microelectron Reliab 19:233–235 Rathore TS, Singh BM (1979) Simulation of RL impedances suitable for micro-miniaturization. Microelectron Reliab 19:233–235
22.
go back to reference Rathore TS (1980) Corrections to simulation of RL impedances suitable for micro-miniaturization. Microelectron Reliab 20:767–768 Rathore TS (1980) Corrections to simulation of RL impedances suitable for micro-miniaturization. Microelectron Reliab 20:767–768
23.
go back to reference Patranabis D, Tripathi MP, Roy SB (1979) A new approach for lossless floating inductor. IEEE Trans Circ Syst 26:892–893 Patranabis D, Tripathi MP, Roy SB (1979) A new approach for lossless floating inductor. IEEE Trans Circ Syst 26:892–893
24.
go back to reference Patranabis D, Paul AN (1980) Floating inductor with two current conveyors. Int J Circ Theor Appl 8:457–468 Patranabis D, Paul AN (1980) Floating inductor with two current conveyors. Int J Circ Theor Appl 8:457–468
25.
go back to reference Pal K (1980) Realization of ideal grounded inductances and frequency dependent negative resistances using current conveyors and without matched components. Int J Circ Theor Appl 9:242–245 Pal K (1980) Realization of ideal grounded inductances and frequency dependent negative resistances using current conveyors and without matched components. Int J Circ Theor Appl 9:242–245
26.
go back to reference Singh V (1980) Novel active RC realisations of tunable floating inductors. Electron Lett 16:758 Singh V (1980) Novel active RC realisations of tunable floating inductors. Electron Lett 16:758
27.
go back to reference Pal K (1980) Novel F.D.N.C Simulation using current conveyors. Electron Lett 16:639–641 Pal K (1980) Novel F.D.N.C Simulation using current conveyors. Electron Lett 16:639–641
28.
go back to reference Senani R (1980) New tunable synthetic floating inductors. Electron Lett 16:382–383 Senani R (1980) New tunable synthetic floating inductors. Electron Lett 16:382–383
29.
go back to reference Senani R (1980) Novel active RC realisations of tunable floating inductors. Electron Lett 16:154–155 Senani R (1980) Novel active RC realisations of tunable floating inductors. Electron Lett 16:154–155
30.
go back to reference Rathore TS, Singh BM (1980) Active RC synthesis of floating immittances. Int J Circ Theor Appl 8:184–188 Rathore TS, Singh BM (1980) Active RC synthesis of floating immittances. Int J Circ Theor Appl 8:184–188
31.
go back to reference Rathore TS (1980) Grounded capacitor synthesis of RL impedances based on lagging current concept. Int J Circ Theor Appl 8:461–465 Rathore TS (1980) Grounded capacitor synthesis of RL impedances based on lagging current concept. Int J Circ Theor Appl 8:461–465
32.
go back to reference Salawu RI (1980) Realization of frequency dependent negative resistance. Microelectron Reliab 20:853–857 Salawu RI (1980) Realization of frequency dependent negative resistance. Microelectron Reliab 20:853–857
33.
go back to reference Paul AN, Patranabis D (1981) Active simulation of grounded inductors using a single current conveyor. IEEE Trans Circ Syst 28:164–165 Paul AN, Patranabis D (1981) Active simulation of grounded inductors using a single current conveyor. IEEE Trans Circ Syst 28:164–165
34.
go back to reference Singh V (1981) Active RC single–resistance controlled lossless floating inductance simulation using single grounded capacitor. Electron Lett 17:920–921 Singh V (1981) Active RC single–resistance controlled lossless floating inductance simulation using single grounded capacitor. Electron Lett 17:920–921
35.
go back to reference Senani R (1982) Novel Lossless synthetic floating inductor employing a grounded capacitor. Electron Lett 18:413–414 Senani R (1982) Novel Lossless synthetic floating inductor employing a grounded capacitor. Electron Lett 18:413–414
36.
go back to reference Nandi R, Nandi S (1983) Novel insensitive floating inductor simulation using single current conveyor. Int J Electron Commun (AEU) 37:393–396 Nandi R, Nandi S (1983) Novel insensitive floating inductor simulation using single current conveyor. Int J Electron Commun (AEU) 37:393–396
37.
go back to reference Nandi S, Jana PB, Nandi R (1983) Floating ideal FDNR using current conveyors. Electron Lett 19:251 Nandi S, Jana PB, Nandi R (1983) Floating ideal FDNR using current conveyors. Electron Lett 19:251
38.
go back to reference Paul AN, Dey AN, Patranabis D (1983) A floating NIC without constraint and its application. IEEE Trans Circ Syst 30:181–183 Paul AN, Dey AN, Patranabis D (1983) A floating NIC without constraint and its application. IEEE Trans Circ Syst 30:181–183
39.
go back to reference Senani R (1984) Novel application of generalised current conveyor. Electron Lett 20:169–170; also see ibid (1984) 20: 356 Senani R (1984) Novel application of generalised current conveyor. Electron Lett 20:169–170; also see ibid (1984) 20: 356
40.
go back to reference Senani R (1984) Floating ideal FDNR using only two current conveyors. Electron Lett 20:205–206 Senani R (1984) Floating ideal FDNR using only two current conveyors. Electron Lett 20:205–206
41.
go back to reference Nandi S, Jana PB, Nandi R (1984) Novel floating ideal tunable FDNR simulation using current conveyors. IEEE Trans Circ Syst 31:402–403 Nandi S, Jana PB, Nandi R (1984) Novel floating ideal tunable FDNR simulation using current conveyors. IEEE Trans Circ Syst 31:402–403
42.
go back to reference Abdalla YAN (1985) Comment on Novel floating ideal tunable FDNR simulation using current conveyors. IEEE Trans Circ Syst 32:303MathSciNet Abdalla YAN (1985) Comment on Novel floating ideal tunable FDNR simulation using current conveyors. IEEE Trans Circ Syst 32:303MathSciNet
43.
go back to reference Toumazou C, Lidgey FJ (1985) Floating-impedance convertors using current conveyors. Electron Lett 21:640–642 Toumazou C, Lidgey FJ (1985) Floating-impedance convertors using current conveyors. Electron Lett 21:640–642
44.
go back to reference Wilson B (1985) Floating FDNR employing a new CCII-conveyor implementation. Electron Lett 21:996–997 Wilson B (1985) Floating FDNR employing a new CCII-conveyor implementation. Electron Lett 21:996–997
45.
go back to reference Senani R (1985) Novel higher-order active filter design using current conveyors. Electron Lett 21:1055–1057 Senani R (1985) Novel higher-order active filter design using current conveyors. Electron Lett 21:1055–1057
46.
go back to reference Von Grunigen DC, Ramseier D, Moschytz GS (1986) Simulation of floating impedances for low-frequency active filter design. Proc IEEE 74:366–367 Von Grunigen DC, Ramseier D, Moschytz GS (1986) Simulation of floating impedances for low-frequency active filter design. Proc IEEE 74:366–367
47.
go back to reference Senani R (1986) On the realization of floating active elements. IEEE Trans Circ Syst 33:323–324 Senani R (1986) On the realization of floating active elements. IEEE Trans Circ Syst 33:323–324
48.
go back to reference Higashimura M, Fukui Y (1986) Novel lossless tunable floating FDNR simulation using two current conveyors and a buffer. Electron Lett 22:938–939 Higashimura M, Fukui Y (1986) Novel lossless tunable floating FDNR simulation using two current conveyors and a buffer. Electron Lett 22:938–939
49.
go back to reference Senani R (1987) Network transformations for incorporating nonideal simulated immittances in the design of active filters and oscillators. IEE Proc 134:158–166 Senani R (1987) Network transformations for incorporating nonideal simulated immittances in the design of active filters and oscillators. IEE Proc 134:158–166
50.
go back to reference Nandi R (1987) Precise realisation of an insensitive floating negative admittance convertor. Electron Lett 23:775–777 Nandi R (1987) Precise realisation of an insensitive floating negative admittance convertor. Electron Lett 23:775–777
51.
go back to reference Nandi R (1987) Novel floating negative immittance convertor. IEE Proc 134:236–238 Nandi R (1987) Novel floating negative immittance convertor. IEE Proc 134:236–238
52.
go back to reference Higashimura M, Fukui Y (1987) Novel method for realising lossless floating immittance using current conveyors. Electron Lett 23:498–499 Higashimura M, Fukui Y (1987) Novel method for realising lossless floating immittance using current conveyors. Electron Lett 23:498–499
53.
go back to reference Higashimura M, Fukui Y (1987) Realization of floating immittance using three current conveyors. IEICE Trans JPN J70-A:1203–1204 Higashimura M, Fukui Y (1987) Realization of floating immittance using three current conveyors. IEICE Trans JPN J70-A:1203–1204
54.
go back to reference Higashimura M, Fukui Y (1987) New lossless tunable floating FDNR simulation using two current conveyors and an INIC. Electron Lett 23:529–531 Higashimura M, Fukui Y (1987) New lossless tunable floating FDNR simulation using two current conveyors and an INIC. Electron Lett 23:529–531
55.
go back to reference Surakampontorn W, Thitimajshima P (1988) Integrable electronically tunable current conveyors. IEE Proc 135:71–77 Surakampontorn W, Thitimajshima P (1988) Integrable electronically tunable current conveyors. IEE Proc 135:71–77
56.
go back to reference Senani R (1988) Floating immittance realisation: Nullor approach. Electron Lett 24:403–405 Senani R (1988) Floating immittance realisation: Nullor approach. Electron Lett 24:403–405
57.
go back to reference Higashimura M, Fukui Y (1988) Type 1 mutator using current conveyor and its application to immittance simulation. Int J Electron 64:377–383 Higashimura M, Fukui Y (1988) Type 1 mutator using current conveyor and its application to immittance simulation. Int J Electron 64:377–383
58.
go back to reference Ishida M, Okazaki Y, Fukui Y, Ebisutani K (1988) Realization of immittance function using current conveyors. Trans IEICE J71-A:1205–1207 Ishida M, Okazaki Y, Fukui Y, Ebisutani K (1988) Realization of immittance function using current conveyors. Trans IEICE J71-A:1205–1207
59.
go back to reference Higashimura M, Fukui Y (1988) Realization of impedance function using current conveyors. Int J Electron 65:223–231 Higashimura M, Fukui Y (1988) Realization of impedance function using current conveyors. Int J Electron 65:223–231
60.
go back to reference Senani R (1989) Three op-amp floating immittance simulators: a retrospection. IEEE Trans Circ Syst 36:1463–1465 Senani R (1989) Three op-amp floating immittance simulators: a retrospection. IEEE Trans Circ Syst 36:1463–1465
61.
go back to reference Singh V (1989) An implementation of CCII-current conveyor, with application. IEEE Trans Circ Syst 36:1250–1251 Singh V (1989) An implementation of CCII-current conveyor, with application. IEEE Trans Circ Syst 36:1250–1251
62.
go back to reference Higashimura M, Fukui Y (1989) Simulation of lossless floating inductance using two current conveyors and an operational transconductance amplifier. Int J Electron 66:633–638 Higashimura M, Fukui Y (1989) Simulation of lossless floating inductance using two current conveyors and an operational transconductance amplifier. Int J Electron 66:633–638
63.
go back to reference Himura A, Fukui Y, Ishida M, Higashimura M (1989) Immittance function simulator using a single current conveyor. IEICE Trans E72:1279–1284 Himura A, Fukui Y, Ishida M, Higashimura M (1989) Immittance function simulator using a single current conveyor. IEICE Trans E72:1279–1284
64.
go back to reference Kumar U, Shukla SK (1989) The implementation and applications of current conveyors. Microelectron J 20:25–46 Kumar U, Shukla SK (1989) The implementation and applications of current conveyors. Microelectron J 20:25–46
65.
go back to reference Himura A, Fukui Y, Ishida M, Higashimura M (1989) Immittance function simulator using a single current conveyor. Trans IEICE 72:1279–1284 Himura A, Fukui Y, Ishida M, Higashimura M (1989) Immittance function simulator using a single current conveyor. Trans IEICE 72:1279–1284
66.
go back to reference Toumazou C, Lidgey FJ (1989) Novel current-mode instrumentation amplifier. Electron Lett 25:228–230 Toumazou C, Lidgey FJ (1989) Novel current-mode instrumentation amplifier. Electron Lett 25:228–230
67.
go back to reference Wilson B (1989) Universal conveyor instrumentation amplifier. Electron Lett 25:470–471 Wilson B (1989) Universal conveyor instrumentation amplifier. Electron Lett 25:470–471
68.
go back to reference Wilson B (1990) Recent developments in current conveyors and current-mode circuits. IEE Proc 137:63–77 Wilson B (1990) Recent developments in current conveyors and current-mode circuits. IEE Proc 137:63–77
69.
go back to reference Himura A, Fukui Y, Ishida M, Higashimura M (1990) Series impedance simulators using one CCII. Electron Lett 26:269–270 Himura A, Fukui Y, Ishida M, Higashimura M (1990) Series impedance simulators using one CCII. Electron Lett 26:269–270
70.
go back to reference Fabre A, Alami M (1992) Insensitive current-mode band pass implementation-based non-ideal gyrators. IEEE Trans Circ Syst 39:152–155 Fabre A, Alami M (1992) Insensitive current-mode band pass implementation-based non-ideal gyrators. IEEE Trans Circ Syst 39:152–155
71.
go back to reference Fabre A, Siarry P, Lameche M (1991) Current controlled translinear impedance converter. Int J Electron 70:795–801 Fabre A, Siarry P, Lameche M (1991) Current controlled translinear impedance converter. Int J Electron 70:795–801
72.
go back to reference Tabei K, Czarnul Z, Takagi S (1991) Realization of highly linear MOS circuits using negative impedance convertors. Electron Lett 27:1416–1417 Tabei K, Czarnul Z, Takagi S (1991) Realization of highly linear MOS circuits using negative impedance convertors. Electron Lett 27:1416–1417
73.
go back to reference Bruun E, Olesen OH (1992) Conveyor implementations of generic current mode circuits. Int J Electron 73(1):129–140 Bruun E, Olesen OH (1992) Conveyor implementations of generic current mode circuits. Int J Electron 73(1):129–140
74.
go back to reference Higashimura M, Fukui Y (1992) Realization of immittance floatator using nullor. IEICE Trans Fundament E-75:644–649 Higashimura M, Fukui Y (1992) Realization of immittance floatator using nullor. IEICE Trans Fundament E-75:644–649
75.
go back to reference Lee JY, Tsao HW (1992) True RC integrators based on current conveyors with tunable time constants using active control and modified loop technique. IEEE Trans Instrum Measure 41(5):709–714 Lee JY, Tsao HW (1992) True RC integrators based on current conveyors with tunable time constants using active control and modified loop technique. IEEE Trans Instrum Measure 41(5):709–714
76.
go back to reference Hou Chun-Li WY-P, Lu F-C (1993) Synthetic methods for floating immittances of one-ports and z and y parameters of multiports using CCII. Int J Electron 74:577–586 Hou Chun-Li WY-P, Lu F-C (1993) Synthetic methods for floating immittances of one-ports and z and y parameters of multiports using CCII. Int J Electron 74:577–586
77.
go back to reference Hou CL, Chen RD, Wu YP, Hu PC (1993) Realization of grounded and floating immittance function simulators using current conveyors. Int J Electron 74:917–923 Hou CL, Chen RD, Wu YP, Hu PC (1993) Realization of grounded and floating immittance function simulators using current conveyors. Int J Electron 74:917–923
78.
go back to reference Chang C-M, Wang H-Y, Chien C-C (1994) Realization of series impedance functions using one CCII+. Int J Electron 76:83–85 Chang C-M, Wang H-Y, Chien C-C (1994) Realization of series impedance functions using one CCII+. Int J Electron 76:83–85
79.
go back to reference Soliman AM (1996) A linear trans conductor-multiplier using a matched pair of MOS transistors and a current conveyor. Frequenz 50:292–293 Soliman AM (1996) A linear trans conductor-multiplier using a matched pair of MOS transistors and a current conveyor. Frequenz 50:292–293
80.
go back to reference Vrba K, Cajka J, Zeman V (1996) Floating RC networks using current conveyors. Radioengineering 5:8–11 Vrba K, Cajka J, Zeman V (1996) Floating RC networks using current conveyors. Radioengineering 5:8–11
81.
go back to reference Liu S-I, Yang C-Y (1996) Higher-order immittance function synthesis using CCIIIs. Electron Lett 32:2295–2296 Liu S-I, Yang C-Y (1996) Higher-order immittance function synthesis using CCIIIs. Electron Lett 32:2295–2296
82.
go back to reference Saaid O, Fabre A (1996) Class AB current-controlled resistor of high performance current-mode applications. Electron Lett 32:4–5 Saaid O, Fabre A (1996) Class AB current-controlled resistor of high performance current-mode applications. Electron Lett 32:4–5
83.
go back to reference Vrba K, Cajka J (1997) High-order one-port elements for low pass realization. J Electr Eng 48:31–34 Vrba K, Cajka J (1997) High-order one-port elements for low pass realization. J Electr Eng 48:31–34
84.
go back to reference Layos MC, Haritantis I (1997) On the derivation of current-mode floating inductors. Int J Circ Theor Appl 25:29–36 Layos MC, Haritantis I (1997) On the derivation of current-mode floating inductors. Int J Circ Theor Appl 25:29–36
85.
go back to reference Wang HY, Lee CT (1997) Immittance function simulator using a single current conveyor. Electron Lett 33:574–576 Wang HY, Lee CT (1997) Immittance function simulator using a single current conveyor. Electron Lett 33:574–576
86.
go back to reference Al-Walaie Soliman A, Alturaigi MA (1997) Current mode simulation of lossless floating inductance. Int J Electron 83:825–829 Al-Walaie Soliman A, Alturaigi MA (1997) Current mode simulation of lossless floating inductance. Int J Electron 83:825–829
87.
go back to reference Kiranon W, Pawarangkoon P (1997) Floating inductance simulation based on current conveyors. Electron Lett 33:21 Kiranon W, Pawarangkoon P (1997) Floating inductance simulation based on current conveyors. Electron Lett 33:21
88.
go back to reference Abuelma’atti MT (1998) (Comment) Floating inductances simulation based on current conveyors. Electron Lett 34:1037–1038 Abuelma’atti MT (1998) (Comment) Floating inductances simulation based on current conveyors. Electron Lett 34:1037–1038
89.
go back to reference Cicekoglu O (1998) New current conveyor based active-gyrator implementation. Microelectron J 29:525–528 Cicekoglu O (1998) New current conveyor based active-gyrator implementation. Microelectron J 29:525–528
90.
go back to reference Karybakas CA, Horopanitis EE (1998) V-I scalar circuits based on CCIIs. Electron Lett 34:317–318 Karybakas CA, Horopanitis EE (1998) V-I scalar circuits based on CCIIs. Electron Lett 34:317–318
91.
go back to reference Ozoguz S, Acar C (1998) On the realization of floating immittance function simulators using current conveyors. Int J Electron 85:463–475 Ozoguz S, Acar C (1998) On the realization of floating immittance function simulators using current conveyors. Int J Electron 85:463–475
92.
go back to reference Cabeza R, Carlosena A (1998) Computational synthesis of arbitrary floating impedances. Int J Circ Theor Appl 26:463–475MATH Cabeza R, Carlosena A (1998) Computational synthesis of arbitrary floating impedances. Int J Circ Theor Appl 26:463–475MATH
93.
go back to reference Cicekoglu MO (1998) Active simulation of grounded inductors with CCII+ s and grounded passive elements. Int J Electron 85:455–462 Cicekoglu MO (1998) Active simulation of grounded inductors with CCII+ s and grounded passive elements. Int J Electron 85:455–462
94.
go back to reference Abuelma’atti MT, Tasadduq NA (1999) New negative immittance function simulators using current conveyors. Microelectron J 30:911–915 Abuelma’atti MT, Tasadduq NA (1999) New negative immittance function simulators using current conveyors. Microelectron J 30:911–915
95.
go back to reference Abuelma’atti MT (2000) Comment on active simulation of grounded inductors with CCII+ s and grounded passive elements. Int J Electron 87:177–181 Abuelma’atti MT (2000) Comment on active simulation of grounded inductors with CCII+ s and grounded passive elements. Int J Electron 87:177–181
96.
go back to reference Cicekoglu O (2000) Reply to comment on ‘Active simulation of grounded inductors with CCII+ s and grounded passive elements’. Int J Electron 87(2):183–184 Cicekoglu O (2000) Reply to comment on ‘Active simulation of grounded inductors with CCII+ s and grounded passive elements’. Int J Electron 87(2):183–184
97.
go back to reference Wang HY, Lee CT (2000) Systematic synthesis of R-L and C-D immittances using single CCIII. Int J Electron 87(3):293–301 Wang HY, Lee CT (2000) Systematic synthesis of R-L and C-D immittances using single CCIII. Int J Electron 87(3):293–301
98.
go back to reference Fabre A, Saaid O (2000) Phase compensation of ideal inductances based second-generation current conveyors. Analog Integr Circ Sig Syst 24:153–162 Fabre A, Saaid O (2000) Phase compensation of ideal inductances based second-generation current conveyors. Analog Integr Circ Sig Syst 24:153–162
99.
go back to reference Gift SGJ (2001) An enhanced current-mode instrumentation amplifier. IEEE Trans Instrum Meas 50:85–88 Gift SGJ (2001) An enhanced current-mode instrumentation amplifier. IEEE Trans Instrum Meas 50:85–88
100.
go back to reference Tomita Y, Agu M (2001) A multi-port D-R mutator using CCIIs with current followers. Int J Electron 88:31–39 Tomita Y, Agu M (2001) A multi-port D-R mutator using CCIIs with current followers. Int J Electron 88:31–39
101.
go back to reference Ferri G, Guerrini N (2001) High-valued passive elements simulation using low-voltage low-power current conveyors for fully integrated applications. IEEE Trans Circ Syst-II 48:405–408 Ferri G, Guerrini N (2001) High-valued passive elements simulation using low-voltage low-power current conveyors for fully integrated applications. IEEE Trans Circ Syst-II 48:405–408
102.
go back to reference Cicekoglu O, Toker A, Kuntman H (2001) Universal immittance function simulators using current conveyors. Comput Electr Eng 27:227–238MATH Cicekoglu O, Toker A, Kuntman H (2001) Universal immittance function simulators using current conveyors. Comput Electr Eng 27:227–238MATH
103.
go back to reference Minaei S, Cicekoglu O, Kuntman H, Turkoz S (2002) Electronically tunable, active only floating inductance simulation. Int J Electron 89:905–912 Minaei S, Cicekoglu O, Kuntman H, Turkoz S (2002) Electronically tunable, active only floating inductance simulation. Int J Electron 89:905–912
104.
go back to reference Ferri G, Guerrini NC, Diqual M (2003) CCII-based floating inductance simulator with compensated series resistance. Electron Lett 39:22 Ferri G, Guerrini NC, Diqual M (2003) CCII-based floating inductance simulator with compensated series resistance. Electron Lett 39:22
105.
go back to reference Arslan E, Cam U, Cicekoglu MO (2003) Novel lossless grounded inductance simulators employing only a single first generation current conveyors. Frequenz 57:204–206 Arslan E, Cam U, Cicekoglu MO (2003) Novel lossless grounded inductance simulators employing only a single first generation current conveyors. Frequenz 57:204–206
106.
go back to reference Khan IA, Zaidi MH (2003) A novel ideal floating inductor using translinear conveyors. Active Passive Electron Comput 26:87–89 Khan IA, Zaidi MH (2003) A novel ideal floating inductor using translinear conveyors. Active Passive Electron Comput 26:87–89
107.
go back to reference Gift SJG (2004) New simulated inductor using operational conveyors. Int J Electron 91:477–483 Gift SJG (2004) New simulated inductor using operational conveyors. Int J Electron 91:477–483
108.
go back to reference Pal K (2004) Floating inductance and FDNR using positive polarity current conveyors. Active Passive Electron Comput 27:81–83 Pal K (2004) Floating inductance and FDNR using positive polarity current conveyors. Active Passive Electron Comput 27:81–83
109.
go back to reference Anand Mohan PV (2005) Floating capacitance simulation using current conveyors. J Circ Syst Comput 14:123–128 Anand Mohan PV (2005) Floating capacitance simulation using current conveyors. J Circ Syst Comput 14:123–128
110.
go back to reference Abuelma’atti MT, Al-Shahrani SM, Al-Absi MK (2005) Simulation of a mutually coupled circuit using plus-type CCIIs. Int J Electron 92:49–54 Abuelma’atti MT, Al-Shahrani SM, Al-Absi MK (2005) Simulation of a mutually coupled circuit using plus-type CCIIs. Int J Electron 92:49–54
111.
go back to reference Ghallab YH, Badawy W, Kaler VIS, Maundy BJ (2005) A novel current-mode instrumentation amplifier based on operational floating current conveyor. IEEE Trans Instrum Meas 54:1941–1949 Ghallab YH, Badawy W, Kaler VIS, Maundy BJ (2005) A novel current-mode instrumentation amplifier based on operational floating current conveyor. IEEE Trans Instrum Meas 54:1941–1949
112.
go back to reference Galanis C, Haritantis I (1996) International conference on electronics, circuits and systems 1:65–68 Galanis C, Haritantis I (1996) International conference on electronics, circuits and systems 1:65–68
113.
go back to reference Yuce E, Cicekoglu O, Minaei S (2006) Novel floating inductance and FDNR simulators employing CCII+ s. J Circ Syst Comput 15:75–81 Yuce E, Cicekoglu O, Minaei S (2006) Novel floating inductance and FDNR simulators employing CCII+ s. J Circ Syst Comput 15:75–81
114.
go back to reference Yuce E, Minaei S, Cicekoglu O (2006) Limitations of the simulated inductors based on a single current conveyors. IEEE Trans Circ Syst-I 53:2860–2867 Yuce E, Minaei S, Cicekoglu O (2006) Limitations of the simulated inductors based on a single current conveyors. IEEE Trans Circ Syst-I 53:2860–2867
115.
go back to reference Metin B, Cicekoglu O (2006) A novel floating lossy inductance realization topology with NICs using current conveyors. IEEE Trans Circ Syst-II 53:483–486 Metin B, Cicekoglu O (2006) A novel floating lossy inductance realization topology with NICs using current conveyors. IEEE Trans Circ Syst-II 53:483–486
116.
go back to reference Yuce E, Cicekoglu O (2006) The effects of non-idealities and current limitations on the simulated inductances employing current conveyors. Analog Integr Circ Sig Process 46:103–110 Yuce E, Cicekoglu O (2006) The effects of non-idealities and current limitations on the simulated inductances employing current conveyors. Analog Integr Circ Sig Process 46:103–110
117.
go back to reference Fakhfakh M, Loulou M, Tlelo-Cuautle E (2007) Synthesis of CCIIs and design of simulated CCII-based floating inductance. IEEE international conference on electronics, circuits and systems, Marrakech, pp 379–382 Fakhfakh M, Loulou M, Tlelo-Cuautle E (2007) Synthesis of CCIIs and design of simulated CCII-based floating inductance. IEEE international conference on electronics, circuits and systems, Marrakech, pp 379–382
118.
go back to reference Yuce E, Cicekoglu O, Minaei S (2006) CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integr Circ Sig Process 46:287–291 Yuce E, Cicekoglu O, Minaei S (2006) CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integr Circ Sig Process 46:287–291
119.
go back to reference Yuce E (2006) On the realization of the floating simulators using only grounded passive components. Analog Integr Circ Sig Process 49:161–166 Yuce E (2006) On the realization of the floating simulators using only grounded passive components. Analog Integr Circ Sig Process 49:161–166
120.
go back to reference Yuce E (2007) Inductor implementation using a canonical number of active and passive elements. Int J Electron 94:317–326 Yuce E (2007) Inductor implementation using a canonical number of active and passive elements. Int J Electron 94:317–326
121.
go back to reference Yuce E (2007) Comment and reply ‘The effects of non-idealities and current limitations on the simulated inductances employing current conveyors’. Analog Integr Circ Sig Process 51:55 Yuce E (2007) Comment and reply ‘The effects of non-idealities and current limitations on the simulated inductances employing current conveyors’. Analog Integr Circ Sig Process 51:55
122.
go back to reference Maundy B, Gift S, Aronhime P (2007) A novel hybrid active inductor. IEEE Trans Circ Syst-II 54:663–667 Maundy B, Gift S, Aronhime P (2007) A novel hybrid active inductor. IEEE Trans Circ Syst-II 54:663–667
123.
go back to reference Yuce E, Minaei S (2007) A new active network suitable for realizing ladder filters and transformer simulator. J Circ Syst Comput 16:29–41 Yuce E, Minaei S (2007) A new active network suitable for realizing ladder filters and transformer simulator. J Circ Syst Comput 16:29–41
124.
go back to reference Yuce E, Minaei S, Ibrahim MA (2007) A new simulation of mutually coupled circuit based on CCIIs. Int J Electron 94:367–372 Yuce E, Minaei S, Ibrahim MA (2007) A new simulation of mutually coupled circuit based on CCIIs. Int J Electron 94:367–372
125.
go back to reference Saad RA, Soliman AM (2008) Generation, modelling and analysis of CCII-based gyrators using the generalized symbolic frame work for linear active circuits. Int J Circ Theor Appl 36:289–309MATH Saad RA, Soliman AM (2008) Generation, modelling and analysis of CCII-based gyrators using the generalized symbolic frame work for linear active circuits. Int J Circ Theor Appl 36:289–309MATH
126.
go back to reference Riewruja V, Petchmaneelumka W (2008) Floating current-controlled resistance converters using OTAs. Int J Electron Commun (AEU) 62:725–731 Riewruja V, Petchmaneelumka W (2008) Floating current-controlled resistance converters using OTAs. Int J Electron Commun (AEU) 62:725–731
127.
go back to reference Minaei S, Yuce E (2008) Realization of tunable active floating inductance simulators. Int J Electron 95:27–37 Minaei S, Yuce E (2008) Realization of tunable active floating inductance simulators. Int J Electron 95:27–37
128.
go back to reference Yuce E (2008) Grounded inductor simulators with improved low-frequency performances. IEEE Trans Instrum Meas 57:1079–1084 Yuce E (2008) Grounded inductor simulators with improved low-frequency performances. IEEE Trans Instrum Meas 57:1079–1084
129.
go back to reference Ferri G, Guerrini N, Silverii E, Tatone A (2008) Vibration damping using CCII-based inductance simulators. IEEE Trans Instrum Meas 57:907–914 Ferri G, Guerrini N, Silverii E, Tatone A (2008) Vibration damping using CCII-based inductance simulators. IEEE Trans Instrum Meas 57:907–914
130.
go back to reference Maundy B, Gift S, Aronhime P (2008) Practical voltage/current-controlled grounded resistor with dynamic range extension. IET Circ Devices Syst 2:201–206 Maundy B, Gift S, Aronhime P (2008) Practical voltage/current-controlled grounded resistor with dynamic range extension. IET Circ Devices Syst 2:201–206
131.
go back to reference Sagbas M, Ayten UE, Sedef H, Koksal M (2009) Floating immittance function simulator and its applications. Circ Syst Sig Process 28:55–63MATH Sagbas M, Ayten UE, Sedef H, Koksal M (2009) Floating immittance function simulator and its applications. Circ Syst Sig Process 28:55–63MATH
132.
go back to reference Sagbas M, Ayten UE, Sedef H, Koksal M (2009) Electronically tunable floating inductance simulator. Int J Electron Commun (AEU) 63:423–427 Sagbas M, Ayten UE, Sedef H, Koksal M (2009) Electronically tunable floating inductance simulator. Int J Electron Commun (AEU) 63:423–427
133.
go back to reference Yuce E, Minaei S (2009) On the realization of simulated inductors with reduced parasitic impedance effects. Circ Syst Sig Process 28:451–465 Yuce E, Minaei S (2009) On the realization of simulated inductors with reduced parasitic impedance effects. Circ Syst Sig Process 28:451–465
134.
go back to reference Marcellis AD, Ferri G, Guerrini NC, Scotti G, Stornelli V, Trifiletti A (2009) The VCG-CCII: a novel building block and its application to capacitance multiplication. Analog Integr Circ Sig Process 58:55–59 Marcellis AD, Ferri G, Guerrini NC, Scotti G, Stornelli V, Trifiletti A (2009) The VCG-CCII: a novel building block and its application to capacitance multiplication. Analog Integr Circ Sig Process 58:55–59
135.
go back to reference Khan IA, Afzal N, Khan MR (2009) Digitally programmable impedance multiplier using CCIIs with high resolution capability. J Active Passive Electron Devices 8:247–257 Khan IA, Afzal N, Khan MR (2009) Digitally programmable impedance multiplier using CCIIs with high resolution capability. J Active Passive Electron Devices 8:247–257
136.
go back to reference Lahiri A (2009) Comment on electronically tunable floating inductance simulator. Int J Electron Commun (AEU) 63:878 Lahiri A (2009) Comment on electronically tunable floating inductance simulator. Int J Electron Commun (AEU) 63:878
137.
go back to reference Saad RA, Soliman AM (2010) On the systematic synthesis of CCII-based floating simulators. Int J Circ Theor Appl 38:935–967MATH Saad RA, Soliman AM (2010) On the systematic synthesis of CCII-based floating simulators. Int J Circ Theor Appl 38:935–967MATH
138.
go back to reference Metin B, Minaei S (2010) Parasitic compensation in CCI-based circuits for reduced power consumption. Analog Integr Circ Sig Process 65:157–162 Metin B, Minaei S (2010) Parasitic compensation in CCI-based circuits for reduced power consumption. Analog Integr Circ Sig Process 65:157–162
139.
go back to reference Soliman AM (2010) New CCII and ICCII based realizations of L-C and L-R mutators. Circ Syst Sig Process 29:1181–1191MATH Soliman AM (2010) New CCII and ICCII based realizations of L-C and L-R mutators. Circ Syst Sig Process 29:1181–1191MATH
140.
go back to reference Horng JW, Hou CL, Chun L, Chang CM, Yang H, Shyu WT (2009) Higher order immittance functions using current conveyors. Analog Integr Circ Sig Process 61:205–209 Horng JW, Hou CL, Chun L, Chang CM, Yang H, Shyu WT (2009) Higher order immittance functions using current conveyors. Analog Integr Circ Sig Process 61:205–209
141.
go back to reference Swamy MNS (2011) Mutators, generalized impedance converters and inverters and their realization using generalized current conveyors. Circ Syst Sig Process 30:209–232MATHMathSciNet Swamy MNS (2011) Mutators, generalized impedance converters and inverters and their realization using generalized current conveyors. Circ Syst Sig Process 30:209–232MATHMathSciNet
142.
go back to reference Khan AA, Al-Turaigi MA, El-Ela MA (1995) An improved current-mode instrumentation amplifier with bandwidth independent of gain. IEEE Trans Instrum Meas 44 Khan AA, Al-Turaigi MA, El-Ela MA (1995) An improved current-mode instrumentation amplifier with bandwidth independent of gain. IEEE Trans Instrum Meas 44
143.
go back to reference Bruun E (1991) Constant bandwidth current-mode operational amplifier. Electron Lett 27:1673–1674 Bruun E (1991) Constant bandwidth current-mode operational amplifier. Electron Lett 27:1673–1674
144.
go back to reference De Jager W, Smit J (1978) Design and symbolic analysis of current-mode analog circuits. Alfdelingder Electrotechneik De Jager W, Smit J (1978) Design and symbolic analysis of current-mode analog circuits. Alfdelingder Electrotechneik
145.
go back to reference Senani R (1987) Generation of new two-amplifier synthetic floating inductors. Electron Lett 23:1202–1203 Senani R (1987) Generation of new two-amplifier synthetic floating inductors. Electron Lett 23:1202–1203
146.
go back to reference Senani R (1987) A novel application of four terminal floating nullors. Proc IEEE 75:1544–1546 Senani R (1987) A novel application of four terminal floating nullors. Proc IEEE 75:1544–1546
147.
go back to reference Prestcott AJ (1966) Loss compensated active gyrator using differential input operational amplifiers. Electron Lett 2:283–284 Prestcott AJ (1966) Loss compensated active gyrator using differential input operational amplifiers. Electron Lett 2:283–284
148.
go back to reference Ford RL, Girling FEJ (1966) Active filters and oscillators using simulated inductance. Electron Lett 2:52 Ford RL, Girling FEJ (1966) Active filters and oscillators using simulated inductance. Electron Lett 2:52
149.
go back to reference Cabeza R, Carlosena A, Serrano L (1994) Unified approach to the implementations of universal active devices. Electron Lett 30:618–620 Cabeza R, Carlosena A, Serrano L (1994) Unified approach to the implementations of universal active devices. Electron Lett 30:618–620
150.
go back to reference Pal K (1981) Novel floating inductance using current conveyors. Electron Lett 17:638 Pal K (1981) Novel floating inductance using current conveyors. Electron Lett 17:638
151.
go back to reference Horng JW (2012) General high-order grounded and floating immittance structures using current conveyors. Analog Integr Circ Sig Process 71:265–274 Horng JW (2012) General high-order grounded and floating immittance structures using current conveyors. Analog Integr Circ Sig Process 71:265–274
152.
go back to reference Cabeza R, Carlosena A (1997) Analog universal active device: theory, design and applications. Analog Integ Circ Sig Process 12:153–168 Cabeza R, Carlosena A (1997) Analog universal active device: theory, design and applications. Analog Integ Circ Sig Process 12:153–168
153.
go back to reference Yuce E (2008) Negative impedance converter with reduced nonideal gain and parasitic impedance effects. IEEE Trans Circ Syst 55:276–283MathSciNet Yuce E (2008) Negative impedance converter with reduced nonideal gain and parasitic impedance effects. IEEE Trans Circ Syst 55:276–283MathSciNet
154.
go back to reference Patranabis D, Ghosh DK (1984) Integrators and differentiators with current conveyor. IEEE Trans Circ Syst 31:567–569 Patranabis D, Ghosh DK (1984) Integrators and differentiators with current conveyor. IEEE Trans Circ Syst 31:567–569
155.
go back to reference Moreira JP, Silva MM (2001) Limits to the dynamic range of low-power continuous-time integrators. IEEE Trans Circ Syst 48:805–817 Moreira JP, Silva MM (2001) Limits to the dynamic range of low-power continuous-time integrators. IEEE Trans Circ Syst 48:805–817
156.
go back to reference Abuelma’atti MT (1994) On the realization of current-mode integrator using current conveyors. Active Passive Elec Comp 17:79–82 Abuelma’atti MT (1994) On the realization of current-mode integrator using current conveyors. Active Passive Elec Comp 17:79–82
157.
go back to reference Nandi R, Ray SB (1993) Precise realisation of current mode integrators using current conveyor. Electron Lett 29:1152–1153 Nandi R, Ray SB (1993) Precise realisation of current mode integrators using current conveyor. Electron Lett 29:1152–1153
158.
go back to reference Liu S-I, Kuo J-H, Tsao H-W, Wu J, Tsay J-H (1991) New CCII-based differentiator and its applications. Int J Electron 71:645–652 Liu S-I, Kuo J-H, Tsao H-W, Wu J, Tsay J-H (1991) New CCII-based differentiator and its applications. Int J Electron 71:645–652
159.
go back to reference Liu S-I, Hwang Y-S (1994) Dual-input differentiators and integrators with tunable time constants using current conveyors. IEEE Trans Instrum Meas 43:650–654 Liu S-I, Hwang Y-S (1994) Dual-input differentiators and integrators with tunable time constants using current conveyors. IEEE Trans Instrum Meas 43:650–654
160.
go back to reference Bruun E (1992) High speed, current conveyor based voltage mode operational amplifier. Electron Lett 28:742–744 Bruun E (1992) High speed, current conveyor based voltage mode operational amplifier. Electron Lett 28:742–744
161.
go back to reference Gift SJ, Maundy B, Muddeen F (2007) High-performance current-mode instrumentation amplifier circuit. Int J Electron 94:1015–1024 Gift SJ, Maundy B, Muddeen F (2007) High-performance current-mode instrumentation amplifier circuit. Int J Electron 94:1015–1024
162.
go back to reference Wilson B (1988) Constant bandwidth voltage amplification using current conveyors. Int J Electron 65:983–988 Wilson B (1988) Constant bandwidth voltage amplification using current conveyors. Int J Electron 65:983–988
163.
go back to reference Deprettere E (1975) On the minimal realisation of the gyrator by means of nullors and resistors I. Int J Circ Theor 3:383–390MATH Deprettere E (1975) On the minimal realisation of the gyrator by means of nullors and resistors I. Int J Circ Theor 3:383–390MATH
164.
go back to reference Deprettere E (1976) On the minimal realisation of the gyrator by means of nullors and resistors II. Int J Circ Theor 4:285–297MATH Deprettere E (1976) On the minimal realisation of the gyrator by means of nullors and resistors II. Int J Circ Theor 4:285–297MATH
165.
go back to reference Senani R, Bhaskar DR (1994) Versatile voltage-controlled impedance configuration. IEE Proc Circ Devices Syst 141:414–416 Senani R, Bhaskar DR (1994) Versatile voltage-controlled impedance configuration. IEE Proc Circ Devices Syst 141:414–416
166.
go back to reference Hou CL, Wang WY (1998) Realization of floating immittance function simulators using CCII+. Microelectron J 29:59–63 Hou CL, Wang WY (1998) Realization of floating immittance function simulators using CCII+. Microelectron J 29:59–63
167.
go back to reference Berndt DF, Dutta Roy SC (1969) Inductor simulation using a single unity gain amplifier. IEEE J Solid State Circuits 6:161–162 Berndt DF, Dutta Roy SC (1969) Inductor simulation using a single unity gain amplifier. IEEE J Solid State Circuits 6:161–162
168.
go back to reference Daniels RW (1969) Gyrators, negative impedance converters and related circuits. IEEE Trans Circ Theor 16:261–262 Daniels RW (1969) Gyrators, negative impedance converters and related circuits. IEEE Trans Circ Theor 16:261–262
169.
go back to reference Senani R, Bhaskar DR (2008) Comment on Practical voltage/current-controlled grounded resistor with dynamic range extension. IEE Proc 2:465–466 Senani R, Bhaskar DR (2008) Comment on Practical voltage/current-controlled grounded resistor with dynamic range extension. IEE Proc 2:465–466
170.
go back to reference Senani R, Bhaskar DR (1991) Realization of voltage-controlled impedances. IEEE Trans Circ Syst 38:1081–1086; also see ibid, 1991;39:162 Senani R, Bhaskar DR (1991) Realization of voltage-controlled impedances. IEEE Trans Circ Syst 38:1081–1086; also see ibid, 1991;39:162
171.
go back to reference Senani R, Bhaskar DR (1992) A simple configuration for realizing voltage-controlled impedances. IEEE Trans Circ Syst 39:52–59 Senani R, Bhaskar DR (1992) A simple configuration for realizing voltage-controlled impedances. IEEE Trans Circ Syst 39:52–59
Metadata
Title
Basic Analog Circuit Building Blocks Using CCs and Application of CCs in Impedance Synthesis
Authors
Raj Senani
D. R. Bhaskar
A. K. Singh
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-08684-2_5