Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

2. Basic Physics of Carbon Nanotubes and Graphene

Author : Yanjie Su

Published in: High-Performance Carbon-Based Optoelectronic Nanodevices

Publisher: Springer Singapore

Abstract

Carbon nanotubes (CNTs) and graphene are typical low-dimensional nanomaterials with large specific surface area and exceptional band structures. For example, single-walled CNTs (SWCNTs) can be considered as an ideal 1D quantum wires and possess novel electronics and optical properties which are strongly depended on the chiral indices and surface states. While monolayer graphene is a true 2D system in which also exhibits many exceptional electronics and optical properties closely related to the band structures. Therefore, understanding the basic physics of CNTs and graphene is very critical to exploring high performance carbon-based electronic and optical devices. In this chapter, the basic atomic structures of SWCNTs and graphene are first introduced, and then we will mainly introduce their electronics and optical properties since this book mainly focuses on carbon-based photoelectric devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference He M, Zhang S, Zhang J (2020). Horizontal single-walled carbon nanotube arrays: controlled synthesis, characterizations, and applications. Chem Rev, 120(22): 12592–12684. CrossRef He M, Zhang S, Zhang J (2020). Horizontal single-walled carbon nanotube arrays: controlled synthesis, characterizations, and applications. Chem Rev, 120(22): 12592–12684. CrossRef
2.
go back to reference Reich S, Thomsen C, Maultzsch J (2008). Carbon nanotubes: basic concepts and physical properties. John Wiley & Sons. Reich S, Thomsen C, Maultzsch J (2008). Carbon nanotubes: basic concepts and physical properties. John Wiley & Sons.
3.
go back to reference Kong J, Javey A (2009) Carbon Nanotube Electronics. New York, Springer-Verlag. CrossRef Kong J, Javey A (2009) Carbon Nanotube Electronics. New York, Springer-Verlag. CrossRef
4.
go back to reference Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009). The electronic properties of graphene. Rev Modern Phys, 81(1): 109. CrossRef Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009). The electronic properties of graphene. Rev Modern Phys, 81(1): 109. CrossRef
5.
go back to reference Mintmire JW, White CT (1998). Universal density of states for carbon nanotubes. Phys Rev Lett, 81(12), 2506. CrossRef Mintmire JW, White CT (1998). Universal density of states for carbon nanotubes. Phys Rev Lett, 81(12), 2506. CrossRef
6.
go back to reference Weisman, RB, Bachilo, SM (2003). Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett, 3(9): 1235–1238. CrossRef Weisman, RB, Bachilo, SM (2003). Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett, 3(9): 1235–1238. CrossRef
7.
go back to reference Liang W, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park H (2001). Fabry-Perot interference in a nanotube electron waveguide. Nature, 411: 665–669. CrossRef Liang W, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park H (2001). Fabry-Perot interference in a nanotube electron waveguide. Nature, 411: 665–669. CrossRef
8.
go back to reference Kong J, Yenilmez E, Tombler TW, Kim W, Dai H, Laughlin RB, Liu L, Jayanthi CS, Wu SY (2001). Quantum interference and ballistic transmission in nanotube electron waveguides. Phys Rev Lett, 87(10): 106801. Kong J, Yenilmez E, Tombler TW, Kim W, Dai H, Laughlin RB, Liu L, Jayanthi CS, Wu SY (2001). Quantum interference and ballistic transmission in nanotube electron waveguides. Phys Rev Lett, 87(10): 106801.
9.
go back to reference Ando T, Nakanishi T (1998). Impurity scattering in carbon nanotubes–absence of back scattering. Japan J Phys Soc, 67(5): 1704–1713. CrossRef Ando T, Nakanishi T (1998). Impurity scattering in carbon nanotubes–absence of back scattering. Japan J Phys Soc, 67(5): 1704–1713. CrossRef
10.
go back to reference White CT, Todorov TN (1998). Carbon nanotubes as long ballistic conductors. Nature, 393(6682): 240–242. CrossRef White CT, Todorov TN (1998). Carbon nanotubes as long ballistic conductors. Nature, 393(6682): 240–242. CrossRef
11.
go back to reference Choi HJ, Ihm J, Louie SG, Cohen ML (2000). Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys Rev Lett, 84(13): 2917. CrossRef Choi HJ, Ihm J, Louie SG, Cohen ML (2000). Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys Rev Lett, 84(13): 2917. CrossRef
12.
go back to reference Pennington G, Goldsman N (2003). Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Phys Rev B, 68(4): 045426. Pennington G, Goldsman N (2003). Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Phys Rev B, 68(4): 045426.
13.
go back to reference Perebeinos V, Tersoff J, Avouris P (2005). Electron-phonon interaction and transport in semiconducting carbon nano-tubes. Phys Rev Lett, 94(8): 086802. Perebeinos V, Tersoff J, Avouris P (2005). Electron-phonon interaction and transport in semiconducting carbon nano-tubes. Phys Rev Lett, 94(8): 086802.
14.
go back to reference Guo J, Lundstrom M (2005). Role of phonon scattering in carbon nanotube field-effect transistors. Appl Phys Lett, 86(19): 193103. Guo J, Lundstrom M (2005). Role of phonon scattering in carbon nanotube field-effect transistors. Appl Phys Lett, 86(19): 193103.
15.
go back to reference Zhou X, Park JY, Huang S, Liu J, McEuen PL (2005). Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett, 95(14): 146805. Zhou X, Park JY, Huang S, Liu J, McEuen PL (2005). Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett, 95(14): 146805.
16.
go back to reference Dürkop T, Getty SA, Cobas E, Fuhrer MS (2004). Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 4(1): 35–39. CrossRef Dürkop T, Getty SA, Cobas E, Fuhrer MS (2004). Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 4(1): 35–39. CrossRef
17.
go back to reference O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE (2002). Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297(5581): 593–596. CrossRef O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE (2002). Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297(5581): 593–596. CrossRef
18.
go back to reference Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298(5602): 2361–2366. CrossRef Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298(5602): 2361–2366. CrossRef
19.
go back to reference Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881): 1308. CrossRef Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881): 1308. CrossRef
20.
go back to reference Kampfrath T, Perfetti L, Schapper F, Frischkorn C Wolf M (2005). Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett., 95: 187s403. Kampfrath T, Perfetti L, Schapper F, Frischkorn C Wolf M (2005). Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett., 95: 187s403.
21.
go back to reference Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2005). Electronic transport and hot phonons in carbon nanotubes. Phys. Rev. Lett., 95: 236802 Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2005). Electronic transport and hot phonons in carbon nanotubes. Phys. Rev. Lett., 95: 236802
22.
go back to reference Bonaccorso F, Sun Z, Hasan TA, Ferrari AC (2010). Graphene photonics and optoelectronics. Nat Photonics, 4(9): 611. CrossRef Bonaccorso F, Sun Z, Hasan TA, Ferrari AC (2010). Graphene photonics and optoelectronics. Nat Photonics, 4(9): 611. CrossRef
23.
go back to reference Hendry E, Hale PJ, Moger J, Savchenko AK, Mikhailov SA (2010). Coherent nonlinear optical response of graphene. Phys Rev Lett, 105(9): 09740. CrossRef Hendry E, Hale PJ, Moger J, Savchenko AK, Mikhailov SA (2010). Coherent nonlinear optical response of graphene. Phys Rev Lett, 105(9): 09740. CrossRef
24.
go back to reference Bao Q, Loh KP (2012). Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6(5): 3677–3694. CrossRef Bao Q, Loh KP (2012). Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6(5): 3677–3694. CrossRef
Metadata
Title
Basic Physics of Carbon Nanotubes and Graphene
Author
Yanjie Su
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-5497-8_2