Skip to main content
Top
Published in: Wireless Networks 2/2020

06-09-2018

Battery and supercapacitor imperfections modeling and comparison for RF energy harvesting wireless sensor network

Authors: Arpita Jaitawat, Arun Kumar Singh

Published in: Wireless Networks | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In an energy harvesting communication system, the main challenge is to improve network lifetime and maximize throughput by allocating optimal power over a finite span of time, with varying channel and energy. Considering (1) causal state information (SI) of channel and energy (CSI and ESI) and (2) energy storage device imperfections, the problem of power allocation is solved using dynamic programming. As compared to the battery, the supercapacitor is a good alternative for network lifetime improvement, but the imperfections hinder the performance. In this paper, imperfections (storage inefficiency and energy leakage equation) are modeled for supercapacitor and battery. We consider a constant leakage rate for battery. Also, the imperfections of battery and supercapacitor are compared to find which imperfection of supercapacitor is a bottleneck in system performance in different settings (varying channel conditions). The analysis is supported by numerical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ashraphijuo, M., Aggarwal, V., & Wang, X. (2015). Energy harvesting communication using limited battery with efficiency. In 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2015 (pp. 301–306). IEEE. Ashraphijuo, M., Aggarwal, V., & Wang, X. (2015). Energy harvesting communication using limited battery with efficiency. In 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2015 (pp. 301–306). IEEE.
2.
go back to reference Biason, A., & Zorzi, M. (2016). On the effects of battery imperfections in an energy harvesting device. In 2016 International Conference on Computing, Networking and Communications (ICNC) (pp. 1–7). IEEE. Biason, A., & Zorzi, M. (2016). On the effects of battery imperfections in an energy harvesting device. In 2016 International Conference on Computing, Networking and Communications (ICNC) (pp. 1–7). IEEE.
4.
go back to reference Conway, B. E. (2013). Electrochemical supercapacitors: Scientific fundamentals and technological applications. Berlin: Springer. Conway, B. E. (2013). Electrochemical supercapacitors: Scientific fundamentals and technological applications. Berlin: Springer.
5.
go back to reference Cover, T. M., & Thomas, J. A. (2006). Introduction and preview. Elements of information theory (pp. 1–11). New York: Wiley. Cover, T. M., & Thomas, J. A. (2006). Introduction and preview. Elements of information theory (pp. 1–11). New York: Wiley.
6.
go back to reference Devillers, B., & Gündüz, D. (2012). A general framework for the optimization of energy harvesting communication systems with battery imperfections. Journal of Communications and Networks, 14(2), 130–139.CrossRef Devillers, B., & Gündüz, D. (2012). A general framework for the optimization of energy harvesting communication systems with battery imperfections. Journal of Communications and Networks, 14(2), 130–139.CrossRef
7.
go back to reference Hall, P. J., & Bain, E. J. (2008). Energy-storage technologies and electricity generation. Energy Policy, 36(12), 4352–4355.CrossRef Hall, P. J., & Bain, E. J. (2008). Energy-storage technologies and electricity generation. Energy Policy, 36(12), 4352–4355.CrossRef
8.
go back to reference Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference On System Sciences, 2000 (p. 10). IEEE. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference On System Sciences, 2000 (p. 10). IEEE.
9.
go back to reference Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60(9), 4808–4818.MathSciNetCrossRef Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Transactions on Signal Processing, 60(9), 4808–4818.MathSciNetCrossRef
10.
go back to reference Huang, C., Zhang, R., & Cui, S. (2014). Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints. IEEE Transactions on Wireless Communications, 13(2), 1074–1087.CrossRef Huang, C., Zhang, R., & Cui, S. (2014). Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints. IEEE Transactions on Wireless Communications, 13(2), 1074–1087.CrossRef
11.
go back to reference Jog, V., & Anantharam, V. (2014). An energy harvesting awgn channel with a finite battery. In 2014 IEEE International Symposium on Information Theory (ISIT) (pp. 806–810). IEEE. Jog, V., & Anantharam, V. (2014). An energy harvesting awgn channel with a finite battery. In 2014 IEEE International Symposium on Information Theory (ISIT) (pp. 806–810). IEEE.
12.
go back to reference Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 6(4), 32.CrossRef Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 6(4), 32.CrossRef
13.
go back to reference Kaus, M., Kowal, J., & Sauer, D. U. (2010). Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochimica Acta, 55(25), 7516–7523.CrossRef Kaus, M., Kowal, J., & Sauer, D. U. (2010). Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochimica Acta, 55(25), 7516–7523.CrossRef
14.
go back to reference Kowal, J., Avaroglu, E., Chamekh, F., Šenfelds, A., Thien, T., Wijaya, D., et al. (2011). Detailed analysis of the self-discharge of supercapacitors. Journal of Power Sources, 196(1), 573–579.CrossRef Kowal, J., Avaroglu, E., Chamekh, F., Šenfelds, A., Thien, T., Wijaya, D., et al. (2011). Detailed analysis of the self-discharge of supercapacitors. Journal of Power Sources, 196(1), 573–579.CrossRef
15.
go back to reference Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.CrossRef Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.CrossRef
16.
go back to reference Ku, M. L., Li, W., Chen, Y., & Liu, K. R. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys and Tutorials, 18(2), 1384–1412.CrossRef Ku, M. L., Li, W., Chen, Y., & Liu, K. R. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys and Tutorials, 18(2), 1384–1412.CrossRef
17.
go back to reference Kumar, S., et al. (2015). Energy efficient clustering algorithm for wsn. In 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 990–993). IEEE. Kumar, S., et al. (2015). Energy efficient clustering algorithm for wsn. In 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 990–993). IEEE.
18.
go back to reference Lew, A., & Mauch, H. (2006). Dynamic programming: A computational tool (Vol. 38). Berlin: Springer.MATH Lew, A., & Mauch, H. (2006). Dynamic programming: A computational tool (Vol. 38). Berlin: Springer.MATH
19.
go back to reference Li, H., Xu, J., Zhang, R., & Cui, S. (2015). A general utility optimization framework for energy-harvesting-based wireless communications. IEEE Communications Magazine, 53(4), 79–85.CrossRef Li, H., Xu, J., Zhang, R., & Cui, S. (2015). A general utility optimization framework for energy-harvesting-based wireless communications. IEEE Communications Magazine, 53(4), 79–85.CrossRef
20.
go back to reference Minasian, A., ShahbazPanahi, S., & Adve, R. S. (2014). Energy harvesting cooperative communication systems. IEEE Transactions on Wireless Communications, 13(11), 6118–6131.CrossRef Minasian, A., ShahbazPanahi, S., & Adve, R. S. (2014). Energy harvesting cooperative communication systems. IEEE Transactions on Wireless Communications, 13(11), 6118–6131.CrossRef
21.
go back to reference Musolino, V., Tironi, E., & di Milano, P. (2010). A comparison of supercapacitor and high-power lithium batteries. In: Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS) (pp. 1–6). IEEE (2010) Musolino, V., Tironi, E., & di Milano, P. (2010). A comparison of supercapacitor and high-power lithium batteries. In: Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS) (pp. 1–6). IEEE (2010)
23.
go back to reference Pell, W. G., Conway, B. E., Adams, W. A., & de Oliveira, J. (1999). Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid ev applications. Journal of Power Sources, 80(1), 134–141.CrossRef Pell, W. G., Conway, B. E., Adams, W. A., & de Oliveira, J. (1999). Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid ev applications. Journal of Power Sources, 80(1), 134–141.CrossRef
24.
go back to reference Puterman, M. L. (2014). Markov decision processes: Discrete stochastic dynamic programming. New York: Wiley.MATH Puterman, M. L. (2014). Markov decision processes: Discrete stochastic dynamic programming. New York: Wiley.MATH
25.
go back to reference Shafieirad, H., Adve, R. S., & ShahbazPanahi, S. (2017). Throughput maximization with an energy outage constraint for energy harvesting links. In Wireless Communications and Networking Conference Workshops (WCNCW), 2017 IEEE (pp. 1–6). IEEE. Shafieirad, H., Adve, R. S., & ShahbazPanahi, S. (2017). Throughput maximization with an energy outage constraint for energy harvesting links. In Wireless Communications and Networking Conference Workshops (WCNCW), 2017 IEEE (pp. 1–6). IEEE.
26.
go back to reference Tutuncuoglu, K., Yener, A., & Ulukus, S. (2015). Optimum policies for an energy harvesting transmitter under energy storage losses. IEEE Journal on Selected Areas in Communications, 33(3), 467–481.CrossRef Tutuncuoglu, K., Yener, A., & Ulukus, S. (2015). Optimum policies for an energy harvesting transmitter under energy storage losses. IEEE Journal on Selected Areas in Communications, 33(3), 467–481.CrossRef
27.
go back to reference Wang, X., Gong, J., Hu, C., Zhou, S., & Niu, Z. (2015). Optimal power allocation on discrete energy harvesting model. EURASIP Journal on Wireless Communications and Networking, 2015(1), 48.CrossRef Wang, X., Gong, J., Hu, C., Zhou, S., & Niu, Z. (2015). Optimal power allocation on discrete energy harvesting model. EURASIP Journal on Wireless Communications and Networking, 2015(1), 48.CrossRef
28.
go back to reference Wu, Q., Tao, M., Chen, W., & Wu, J. (2014). Optimal energy-efficient transmission for fading channels with an energy harvesting transmitter. In Global Communications Conference (GLOBECOM), 2014 IEEE (pp. 4294–4299). IEEE. Wu, Q., Tao, M., Chen, W., & Wu, J. (2014). Optimal energy-efficient transmission for fading channels with an energy harvesting transmitter. In Global Communications Conference (GLOBECOM), 2014 IEEE (pp. 4294–4299). IEEE.
29.
go back to reference Yang, H., & Zhang, Y. (2011). Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications. Journal of Power Sources, 196(20), 8866–8873.CrossRef Yang, H., & Zhang, Y. (2011). Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications. Journal of Power Sources, 196(20), 8866–8873.CrossRef
30.
go back to reference Zenaidi, M. R., Rezki, Z., & Alouini, M. S. (2016). On communications under stochastic energy harvesting with noisy channel state information. In Global Communications Conference (GLOBECOM), 2016 IEEE (pp. 1–6). IEEE. Zenaidi, M. R., Rezki, Z., & Alouini, M. S. (2016). On communications under stochastic energy harvesting with noisy channel state information. In Global Communications Conference (GLOBECOM), 2016 IEEE (pp. 1–6). IEEE.
31.
go back to reference Zenaidi, M. R., Rezki, Z., & Alouini, M. S. (2017). Performance limits of online energy harvesting communications with noisy channel state information at the transmitter. IEEE Access, 5, 1239–1249.CrossRef Zenaidi, M. R., Rezki, Z., & Alouini, M. S. (2017). Performance limits of online energy harvesting communications with noisy channel state information at the transmitter. IEEE Access, 5, 1239–1249.CrossRef
32.
go back to reference Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. (2018). Incomplete csi based resource optimization in swipt enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17(3), 1882–1892.CrossRef Zhang, H., Du, J., Cheng, J., Long, K., & Leung, V. C. (2018). Incomplete csi based resource optimization in swipt enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17(3), 1882–1892.CrossRef
33.
go back to reference Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRef Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRef
34.
go back to reference Zhang, Y., & Yang, H. (2011). Modeling and characterization of supercapacitors for wireless sensor network applications. Journal of Power Sources, 196(8), 4128–4135.CrossRef Zhang, Y., & Yang, H. (2011). Modeling and characterization of supercapacitors for wireless sensor network applications. Journal of Power Sources, 196(8), 4128–4135.CrossRef
Metadata
Title
Battery and supercapacitor imperfections modeling and comparison for RF energy harvesting wireless sensor network
Authors
Arpita Jaitawat
Arun Kumar Singh
Publication date
06-09-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1831-z

Other articles of this Issue 2/2020

Wireless Networks 2/2020 Go to the issue