Skip to main content
Top
Published in:

28-06-2023 | Original Article

Bayesian active learning approach for estimation of empirical copula-based moment-independent sensitivity indices

Authors: Jingwen Song, Yifei Zhang, Yifan Cui, Ting Yue, Yan Dang

Published in: Engineering with Computers | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The moment-independent global sensitivity method is an important branch among the prosperous developments of global sensitivity analysis. It can quantify the influence of input variables on the uncertainty of model output by taking the entire distribution ranges into account. However, the fast and accurate estimation still remains a challenging task in engineering practices. This article aims at developing a robust and efficient sensitivity analysis approach by leveraging the superiority of Bayesian active learning technology. An algorithm called active learning of cumulative distribution function (AL-CDF) is proposed to efficiently derive an accurate CDF of model output with a small group of training data. In AL-CDF algorithm, a modified U-learning function is defined to determine the best point to guide the learning process of CDF. Moreover, an innovative stopping criterion is specially designed based on functional samples of posterior Gaussian process, aided by an advanced Gaussian process generator. Once the AL-CDF is completed, the Bayesian inference of moment-independent indices by empirical-Copula method can be directly applied in a pure statistic manner, with no more evaluations of the complex performance function. From this perspective, the main computational cost is consumed in the AL-CDF procedure. In addition, benefiting from the sampling strategy from posterior GPR model, the posterior variations of moment-independent sensitivity indices can be derived as by-products. Finally, the effectiveness of the proposed work is demonstrated by a nonlinear numerical example, a wing flutter model as well as the NASA Langley multidisciplinary challenge.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112CrossRef Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112CrossRef
2.
go back to reference Aven T (2010) On the need for restricting the probabilistic analysis in risk assessments to variability. Risk Anal Int J 30(3):354–360CrossRef Aven T (2010) On the need for restricting the probabilistic analysis in risk assessments to variability. Risk Anal Int J 30(3):354–360CrossRef
3.
go back to reference Zhou C, Shi Z, Kucherenko S, Zhao H (2022) A unified approach for global sensitivity analysis based on active subspace and kriging. Reliab Eng Syst Saf 217:108080CrossRef Zhou C, Shi Z, Kucherenko S, Zhao H (2022) A unified approach for global sensitivity analysis based on active subspace and kriging. Reliab Eng Syst Saf 217:108080CrossRef
4.
go back to reference Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, New York Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, New York
5.
go back to reference Wang P, Li C, Liu F, Zhou H (2022) Global sensitivity analysis of failure probability of structures with uncertainties of random variable and their distribution parameters. Eng Comput 38(Suppl 5):4367–4385 Wang P, Li C, Liu F, Zhou H (2022) Global sensitivity analysis of failure probability of structures with uncertainties of random variable and their distribution parameters. Eng Comput 38(Suppl 5):4367–4385
6.
go back to reference El Amri MR, Marrel A (2022) Optimized hsic-based tests for sensitivity analysis: application to thermalhydraulic simulation of accidental scenario on nuclear reactor. Qual Reliab Eng Int 38(3):1386–1403CrossRef El Amri MR, Marrel A (2022) Optimized hsic-based tests for sensitivity analysis: application to thermalhydraulic simulation of accidental scenario on nuclear reactor. Qual Reliab Eng Int 38(3):1386–1403CrossRef
7.
go back to reference Khan S, Kaklis P, Serani A, Diez M (2022) Geometric moment-dependent global sensitivity analysis without simulation data: application to ship hull form optimisation. Comput Aided Des 151:103339MathSciNetCrossRef Khan S, Kaklis P, Serani A, Diez M (2022) Geometric moment-dependent global sensitivity analysis without simulation data: application to ship hull form optimisation. Comput Aided Des 151:103339MathSciNetCrossRef
8.
go back to reference Wang P, Zhu H, Tian H, Cai G (2021) Analytic target cascading with fuzzy uncertainties based on global sensitivity analysis for overall design of launch vehicle powered by hybrid rocket motor. Aerosp Sci Technol 114:106680CrossRef Wang P, Zhu H, Tian H, Cai G (2021) Analytic target cascading with fuzzy uncertainties based on global sensitivity analysis for overall design of launch vehicle powered by hybrid rocket motor. Aerosp Sci Technol 114:106680CrossRef
9.
go back to reference Dasari SK, Cheddad A, Andersson P (2020) Predictive modelling to support sensitivity analysis for robust design in aerospace engineering. Struct Multidiscip Optim 61:2177–2192CrossRef Dasari SK, Cheddad A, Andersson P (2020) Predictive modelling to support sensitivity analysis for robust design in aerospace engineering. Struct Multidiscip Optim 61:2177–2192CrossRef
10.
go back to reference Sobol’ IM, Asotsky D, Kreinin A, Kucherenko S (2011) Construction and comparison of high-dimensional Sobol’generators. Wilmott 2011(56):64–79CrossRef Sobol’ IM, Asotsky D, Kreinin A, Kucherenko S (2011) Construction and comparison of high-dimensional Sobol’generators. Wilmott 2011(56):64–79CrossRef
11.
go back to reference Owen AB (2013) Better estimation of small sobol’sensitivity indices. ACM Trans Model Comput Simul (TOMACS) 23(2):1–17MathSciNetCrossRef Owen AB (2013) Better estimation of small sobol’sensitivity indices. ACM Trans Model Comput Simul (TOMACS) 23(2):1–17MathSciNetCrossRef
12.
go back to reference Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174CrossRef Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174CrossRef
13.
go back to reference Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sensitivity analysis of large models. Environ Model Softw 22(10):1509–1518CrossRef Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sensitivity analysis of large models. Environ Model Softw 22(10):1509–1518CrossRef
14.
go back to reference Borgonovo E (2007) A new uncertainty importance measure. Reliab Eng Syst Saf 92(6):771–784CrossRef Borgonovo E (2007) A new uncertainty importance measure. Reliab Eng Syst Saf 92(6):771–784CrossRef
15.
16.
go back to reference Derennes P, Morio J, Simatos F (2019) A nonparametric importance sampling estimator for moment independent importance measures. Reliab Eng Syst Saf 187:3–16CrossRef Derennes P, Morio J, Simatos F (2019) A nonparametric importance sampling estimator for moment independent importance measures. Reliab Eng Syst Saf 187:3–16CrossRef
17.
go back to reference Barr J, Rabitz H (2022) A generalized kernel method for global sensitivity analysis. SIAM ASA J Uncertain Quantif 10(1):27–54MathSciNetCrossRef Barr J, Rabitz H (2022) A generalized kernel method for global sensitivity analysis. SIAM ASA J Uncertain Quantif 10(1):27–54MathSciNetCrossRef
18.
go back to reference Sarazin G, Derennes P, Morio J (2020) Estimation of high-order moment-independent importance measures for shapley value analysis. Appl Math Model 88:396–417MathSciNetCrossRef Sarazin G, Derennes P, Morio J (2020) Estimation of high-order moment-independent importance measures for shapley value analysis. Appl Math Model 88:396–417MathSciNetCrossRef
19.
go back to reference Cucurachi S, Blanco CF, Steubing B, Heijungs R (2022) Implementation of uncertainty analysis and moment-independent global sensitivity analysis for full-scale life cycle assessment models. J Ind Ecol 26(2):374–391CrossRef Cucurachi S, Blanco CF, Steubing B, Heijungs R (2022) Implementation of uncertainty analysis and moment-independent global sensitivity analysis for full-scale life cycle assessment models. J Ind Ecol 26(2):374–391CrossRef
20.
go back to reference Zhang F, Xu X, Cheng L, Wang L, Liu Z, Zhang L (2019) Global moment-independent sensitivity analysis of single-stage thermoelectric refrigeration system. Energy Res 43:9055–9064CrossRef Zhang F, Xu X, Cheng L, Wang L, Liu Z, Zhang L (2019) Global moment-independent sensitivity analysis of single-stage thermoelectric refrigeration system. Energy Res 43:9055–9064CrossRef
21.
go back to reference Yun W, Lu Z, Jiang X (2019) An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy. Reliab Eng Syst Saf 187:174–182CrossRef Yun W, Lu Z, Jiang X (2019) An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy. Reliab Eng Syst Saf 187:174–182CrossRef
22.
go back to reference Novák L (2022) On distribution-based global sensitivity analysis by polynomial chaos expansion. Comput Struct 267:106808CrossRef Novák L (2022) On distribution-based global sensitivity analysis by polynomial chaos expansion. Comput Struct 267:106808CrossRef
23.
go back to reference Wei P, Lu Z, Yuan X (2013) Monte Carlo simulation for moment-independent sensitivity analysis. Reliab Eng Syst Saf 110:60–67CrossRef Wei P, Lu Z, Yuan X (2013) Monte Carlo simulation for moment-independent sensitivity analysis. Reliab Eng Syst Saf 110:60–67CrossRef
24.
go back to reference Wei P, Lu Z, Song J (2014) Moment-independent sensitivity analysis using copula. Risk Anal 34(2):210–222CrossRef Wei P, Lu Z, Song J (2014) Moment-independent sensitivity analysis using copula. Risk Anal 34(2):210–222CrossRef
25.
go back to reference Han M, Huang Q, Ouyang L, Zhao X (2023) A kriging-based active learning algorithm for contour estimation of integrated response with noise factors. Eng Comput 39:1341–1362 Han M, Huang Q, Ouyang L, Zhao X (2023) A kriging-based active learning algorithm for contour estimation of integrated response with noise factors. Eng Comput 39:1341–1362
26.
go back to reference Kushari S, Mukhopadhyay T, Chakraborty A, Maity S, Dey S (2022) Probability-based unified sensitivity analysis for multi-objective performances of composite laminates: a surrogate-assisted approach. Compos Struct 294:115559CrossRef Kushari S, Mukhopadhyay T, Chakraborty A, Maity S, Dey S (2022) Probability-based unified sensitivity analysis for multi-objective performances of composite laminates: a surrogate-assisted approach. Compos Struct 294:115559CrossRef
27.
go back to reference Song J, Wei P, Valdebenito MA, Faes M, Beer M (2022) Data-driven and active learning of variance-based sensitivity indices with Bayesian probabilistic integration. Mech Syst Signal Process 163:108106CrossRef Song J, Wei P, Valdebenito MA, Faes M, Beer M (2022) Data-driven and active learning of variance-based sensitivity indices with Bayesian probabilistic integration. Mech Syst Signal Process 163:108106CrossRef
28.
29.
go back to reference Wei P, Zheng Y, Fu J, Xu Y, Gao W (2023) An expected integrated error reduction function for accelerating Bayesian active learning of failure probability. Reliab Eng Syst Saf 231:108971CrossRef Wei P, Zheng Y, Fu J, Xu Y, Gao W (2023) An expected integrated error reduction function for accelerating Bayesian active learning of failure probability. Reliab Eng Syst Saf 231:108971CrossRef
30.
go back to reference Nelsen RB (2007) An introduction to copulas. Springer science & business media, Berlin Nelsen RB (2007) An introduction to copulas. Springer science & business media, Berlin
31.
go back to reference Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368CrossRef Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368CrossRef
32.
33.
go back to reference Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning. The MIT Press, Cambridge Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning. The MIT Press, Cambridge
34.
go back to reference Le Gratiet L, Cannamela C, Iooss B (2014) A Bayesian approach for global sensitivity analysis of (multifidelity) computer codes. SIAM ASA J Uncertain Quantif 2(1):336–363MathSciNetCrossRef Le Gratiet L, Cannamela C, Iooss B (2014) A Bayesian approach for global sensitivity analysis of (multifidelity) computer codes. SIAM ASA J Uncertain Quantif 2(1):336–363MathSciNetCrossRef
35.
go back to reference Chen J, Sun W, Li J, Xu J (2013) Stochastic harmonic function representation of stochastic processes. J Appl Mech 80(1):011001 Chen J, Sun W, Li J, Xu J (2013) Stochastic harmonic function representation of stochastic processes. J Appl Mech 80(1):011001
36.
go back to reference Zhao N, Huang G, Kareem A, Li Y, Peng L (2021) Simulation of ergodic multivariate stochastic processes: an enhanced spectral representation method. Mech Syst Signal Process 161:107949CrossRef Zhao N, Huang G, Kareem A, Li Y, Peng L (2021) Simulation of ergodic multivariate stochastic processes: an enhanced spectral representation method. Mech Syst Signal Process 161:107949CrossRef
37.
go back to reference Huang S, Quek S, Phoon K (2001) Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes. Int J Numer Methods Eng 52(9):1029–1043CrossRef Huang S, Quek S, Phoon K (2001) Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes. Int J Numer Methods Eng 52(9):1029–1043CrossRef
38.
go back to reference Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining kriging and monte carlo simulation. Struct Saf 33(2):145–154CrossRef Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining kriging and monte carlo simulation. Struct Saf 33(2):145–154CrossRef
39.
go back to reference He W, Li G, Zhong C, Wang Y (2023) A novel data-driven sparse polynomial chaos expansion for high-dimensional problems based on active subspace and sparse bayesian learning. Struct Multidiscip Optim 66(1):29MathSciNetCrossRef He W, Li G, Zhong C, Wang Y (2023) A novel data-driven sparse polynomial chaos expansion for high-dimensional problems based on active subspace and sparse bayesian learning. Struct Multidiscip Optim 66(1):29MathSciNetCrossRef
40.
go back to reference Ye Z, Zhang W, Shi A et al (2010) Fundamentals of fluid-structure coupling and its application. Harbin Institute of Technology Press, Beijing Ye Z, Zhang W, Shi A et al (2010) Fundamentals of fluid-structure coupling and its application. Harbin Institute of Technology Press, Beijing
41.
go back to reference Crespo LG, Kenny SP, Giesy DP (2014) The Nasa Langley multidisciplinary uncertainty quantification challenge. 16th AIAA Non-deterministic approaches conference, 13–17 January, Maryland, 1347 Crespo LG, Kenny SP, Giesy DP (2014) The Nasa Langley multidisciplinary uncertainty quantification challenge. 16th AIAA Non-deterministic approaches conference, 13–17 January, Maryland, 1347
42.
go back to reference Patelli E, Alvarez DA, Broggi M, Angelis M (2015) Uncertainty management in multidisciplinary design of critical safety systems. J Aerosp Inf Syst 12(1):140–169 Patelli E, Alvarez DA, Broggi M, Angelis M (2015) Uncertainty management in multidisciplinary design of critical safety systems. J Aerosp Inf Syst 12(1):140–169
43.
go back to reference Bi S, Broggi M, Wei P, Beer M (2019) The bhattacharyya distance: enriching the p-box in stochastic sensitivity analysis. Mech Syst Signal Process 129:265–281CrossRef Bi S, Broggi M, Wei P, Beer M (2019) The bhattacharyya distance: enriching the p-box in stochastic sensitivity analysis. Mech Syst Signal Process 129:265–281CrossRef
Metadata
Title
Bayesian active learning approach for estimation of empirical copula-based moment-independent sensitivity indices
Authors
Jingwen Song
Yifei Zhang
Yifan Cui
Ting Yue
Yan Dang
Publication date
28-06-2023
Publisher
Springer London
Published in
Engineering with Computers / Issue 2/2024
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01865-0