Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

Bayesian Deep Learning for Accelerated MR Image Reconstruction

Authors : Jo Schlemper, Daniel C. Castro, Wenjia Bai, Chen Qin, Ozan Oktay, Jinming Duan, Anthony N. Price, Jo Hajnal, Daniel Rueckert

Published in: Machine Learning for Medical Image Reconstruction

Publisher: Springer International Publishing

share
SHARE

Abstract

Recently, many deep learning (DL) based MR image reconstruction methods have been proposed with promising results. However, only a handful of work has been focussing on characterising the behaviour of deep networks, such as investigating when the networks may fail to reconstruct. In this work, we explore the applicability of Bayesian DL techniques to model the uncertainty associated with DL-based reconstructions. In particular, we apply MC-dropout and heteroscedastic loss to the reconstruction networks to model epistemic and aleatoric uncertainty. We show that the proposed Bayesian methods achieve competitive performance when the test images are relatively far from the training data distribution and outperforms when the baseline method is over-parametrised. In addition, we qualitatively show that there seems to be a correlation between the magnitude of the produced uncertainty maps and the error maps, demonstrating the potential utility of the Bayesian DL methods for assessing the reliability of the reconstructed images.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Cohen, J.P., Luck, M., Honari, S.: Distribution matching losses can hallucinate features in medical image translation. arXiv preprint arXiv:​1805.​08841 (2018) Cohen, J.P., Luck, M., Honari, S.: Distribution matching losses can hallucinate features in medical image translation. arXiv preprint arXiv:​1805.​08841 (2018)
2.
go back to reference Gal, Y.: Uncertainty in deep learning. University of Cambridge (2016) Gal, Y.: Uncertainty in deep learning. University of Cambridge (2016)
3.
go back to reference Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79, 3055–3071 (2017) CrossRef Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79, 3055–3071 (2017) CrossRef
4.
go back to reference Han, Y., Yoo, J., Kim, H.H., Shin, H.J., Sung, K., Ye, J.C.: Deep learning with domain adaptation for accelerated projection-reconstruction MR. Magn. Reson. Med. 80(3), 1189–1205 (2018) CrossRef Han, Y., Yoo, J., Kim, H.H., Shin, H.J., Sung, K., Ye, J.C.: Deep learning with domain adaptation for accelerated projection-reconstruction MR. Magn. Reson. Med. 80(3), 1189–1205 (2018) CrossRef
5.
go back to reference Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5580–5590 (2017) Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5580–5590 (2017)
6.
go back to reference Knoll, F., Hammernik, K., Kobler, E., Pock, T., Recht, M.P., Sodickson, D.K.: Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn. Reson. Med. (2018) Knoll, F., Hammernik, K., Kobler, E., Pock, T., Recht, M.P., Sodickson, D.K.: Assessment of the generalization of learned image reconstruction and the potential for transfer learning. Magn. Reson. Med. (2018)
8.
go back to reference Petersen, S.E., et al.: UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18(1), 8 (2016). Feb CrossRef Petersen, S.E., et al.: UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18(1), 8 (2016). Feb CrossRef
9.
go back to reference Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37 (2017) Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37 (2017)
12.
go back to reference Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018) CrossRef Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018) CrossRef
13.
go back to reference Ye, J.C., Han, Y., Cha, E.: Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J. Imaging Sci. 11(2), 991–1048 (2018) MathSciNetCrossRef Ye, J.C., Han, Y., Cha, E.: Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J. Imaging Sci. 11(2), 991–1048 (2018) MathSciNetCrossRef
Metadata
Title
Bayesian Deep Learning for Accelerated MR Image Reconstruction
Authors
Jo Schlemper
Daniel C. Castro
Wenjia Bai
Chen Qin
Ozan Oktay
Jinming Duan
Anthony N. Price
Jo Hajnal
Daniel Rueckert
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00129-2_8

Premium Partner