Skip to main content
Top

2024 | OriginalPaper | Chapter

Bayesian Personalized Sorting Based on Time Factors and Hot Recommendations

Authors : Wenhua Zeng, Junjie Liu, Bo Zhang

Published in: Intelligent Information Processing XII

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter introduces a Bayesian Personalized Ranking model, BPR-TH, designed to address information overload in digital libraries. By incorporating time factors and hot recommendations, BPR-TH effectively handles massive distributed data and cold start problems, outperforming traditional BPR and File-path algorithms. The model is realized through user behavior feature extraction, model construction, and optimization, resulting in improved personalized recommendations both online and offline. Experimental results demonstrate BPR-TH's superior performance in accuracy, coverage, and recall, making it a promising solution for personalized digital library recommendations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, Y., et al.: Research on Personalized Book Recommendation Model Based on Probabilistic Matrix Factorization. Xidian University 2020.002325 Wang, Y., et al.: Research on Personalized Book Recommendation Model Based on Probabilistic Matrix Factorization. Xidian University 2020.002325
2.
go back to reference Yang, X., et al.: Digital library accurate push system design for user needs. Automation and instrumentation, pp. 182–185 (2023) Yang, X., et al.: Digital library accurate push system design for user needs. Automation and instrumentation, pp. 182–185 (2023)
3.
go back to reference Li, G., Zhuo, J., Xu, G., et al.: Correlation visual adversarial bayesian personalized ranking recommendation model. Adv. Eng. Sci. 54(03), 230–238 (2022) Li, G., Zhuo, J., Xu, G., et al.: Correlation visual adversarial bayesian personalized ranking recommendation model. Adv. Eng. Sci. 54(03), 230–238 (2022)
4.
go back to reference Xia, X., Lo, D., Wang, X., et al.: Who should review this change putting text and file location analyses together for more accurate recommendations. In: IEEE International Conference on Software Maintenance and Evolution(SME), IEEE, 261–270 (2015) Xia, X., Lo, D., Wang, X., et al.: Who should review this change putting text and file location analyses together for more accurate recommendations. In: IEEE International Conference on Software Maintenance and Evolution(SME), IEEE, 261–270 (2015)
5.
go back to reference Shen, Y., Jiang, B., Ao, S., et al.: Research on forgetting function-based mean Bayesian personalized ranking algorithm. Appl. Res. Comput. 38(05), 1350–1354+1370 (2021) Shen, Y., Jiang, B., Ao, S., et al.: Research on forgetting function-based mean Bayesian personalized ranking algorithm. Appl. Res. Comput. 38(05), 1350–1354+1370 (2021)
6.
go back to reference Wang, Z., Shi, H., et al.: Enhanced Bayesian personalized ranking algorithm based on user preference Confidenc. Comput. Appl. Softw.39(09), 316–320+349 (2020) Wang, Z., Shi, H., et al.: Enhanced Bayesian personalized ranking algorithm based on user preference Confidenc. Comput. Appl. Softw.39(09), 316–320+349 (2020)
7.
go back to reference Bertoni, G., Daemen, J., Peeters, M., et al.: On the indifferentiability of the sponge construction. Eurocrypt 4965, 181–197 (2008)MathSciNet Bertoni, G., Daemen, J., Peeters, M., et al.: On the indifferentiability of the sponge construction. Eurocrypt 4965, 181–197 (2008)MathSciNet
8.
go back to reference Yuan, D., Feng, F., et al.: An online course recommendation system based on graph convolutional neural network. Modern Electron. Techn. 46(18), 66–70 (2023) Yuan, D., Feng, F., et al.: An online course recommendation system based on graph convolutional neural network. Modern Electron. Techn. 46(18), 66–70 (2023)
9.
go back to reference Liu, N., Cai, C., et al.: Design and implementation of spark-based movie recommendation system. Softw. Eng. 26(06), 59–62+45 (2023) Liu, N., Cai, C., et al.: Design and implementation of spark-based movie recommendation system. Softw. Eng. 26(06), 59–62+45 (2023)
10.
go back to reference Peng, Y., Tong, X., et al.: Lightweight graph convolutional network recommendation based on knowledge graph. J. Nanjing Univ.(natural science), 59(06), 937–946 (2023) Peng, Y., Tong, X., et al.: Lightweight graph convolutional network recommendation based on knowledge graph. J. Nanjing Univ.(natural science), 59(06), 937–946 (2023)
11.
go back to reference Zhang, X., Deng, Q., Liu, X., et al.: Knowledge graph recommendation algorithm combined with graph attention mechanism. Comput. Sci. 50(S2), 464–470 (2023) Zhang, X., Deng, Q., Liu, X., et al.: Knowledge graph recommendation algorithm combined with graph attention mechanism. Comput. Sci. 50(S2), 464–470 (2023)
Metadata
Title
Bayesian Personalized Sorting Based on Time Factors and Hot Recommendations
Authors
Wenhua Zeng
Junjie Liu
Bo Zhang
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_8

Premium Partner