Skip to main content
Top
Published in:

01-12-2016 | Original Article

Behavioral analysis and classification of spammers distributing pornographic content in social media

Authors: Monika Singh, Divya Bansal, Sanjeev Sofat

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Social spam is a huge and complicated problem plaguing social networking sites in several ways. This includes posts, reviews or blogs containing product promotions and contests, adult content and general spam. It has been found that social media websites such as Twitter is also acting as a distributor of pornographic content, although it is considered against their own stated policy. In this paper, we have reviewed the case of Twitter and found that spammers contributing to pornographic content follow legitimate Twitter users and send URLs that link users to pornographic sites. Behavioral analysis of such type of spammers has been conducted using graph-based as well as content-based information fetched using simple text operators to study their characteristics. In the present study, about 74,000 tweets containing pornographic adult content posted by around 18,000 users have been collected and analyzed. The analysis shows that the users posting pornographic content fulfill the characteristics of spammers as stated by the rules and guidelines of Twitter. It has been observed that the illegitimate use of social media for spreading social spam has been spreading at a fast pace, with the network companies turning a blind eye toward this growing problem. Clearly, there is an immense requirement to build an effective solution to remove objectionable and slanderous content as stated above from social networking websites to promote and protect public decency and the welfare of children and adults. It is also essential so as to enhance public experience of genuine users using social media and protect them from harm to their public identity on the World Wide Web. Further in this paper, classification of pornographic spammers and genuine users has also been performed using machine learning technique. Experimental results show that Random Forest classifier is able to predict pornographic spammers with a reasonably high accuracy of 91.96 %. To the best of our knowledge, this is the first attempt to analyze and categorize the behavior of pornographic users in Twitter as spammers. So far, the work has been done for identifying spammers but they are not specifically targeting pornographic spammers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Benevenuto F, Rodrigues T, Almeida V, Almeida J, Goncalves M (2009). Detecting spammers and content promoters in online video social networks. In: Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval (New York, NY, USA, 2009), SIGIR ‘09. ACM, pp 620–627. doi:10.1145/1571941.1572047 Benevenuto F, Rodrigues T, Almeida V, Almeida J, Goncalves M (2009). Detecting spammers and content promoters in online video social networks. In: Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval (New York, NY, USA, 2009), SIGIR ‘09. ACM, pp 620–627. doi:10.​1145/​1571941.​1572047
go back to reference Benevenuto F, Magno G, Rodrigues T, Almeida V (2010). Detecting spammers on Twitter. In: Proceedings of seventh annual collaboration, electronic messaging, anti abuse and spam conference (CEAS 2010), Washington, US, 2010. doi:10.1.1.297.5340 Benevenuto F, Magno G, Rodrigues T, Almeida V (2010). Detecting spammers on Twitter. In: Proceedings of seventh annual collaboration, electronic messaging, anti abuse and spam conference (CEAS 2010), Washington, US, 2010. doi:10.1.1.297.5340
go back to reference Chu Z, Widjaja I, Wang H (2012). Detecting social spam campaigns on twitter. In: Applied cryptography and network security, lecture notes in computer science, vol 7341. Springer, pp 455–472. doi:10.1007/978-3-642-31284-7_27 Chu Z, Widjaja I, Wang H (2012). Detecting social spam campaigns on twitter. In: Applied cryptography and network security, lecture notes in computer science, vol 7341. Springer, pp 455–472. doi:10.​1007/​978-3-642-31284-7_​27
go back to reference Edwards G, Guy A (2015). Connections between Twitter Spammer Categories. In: 5th Workshop on making sense of microposts @WWW2015. May 18th, 2015, Florence, Italy, pp 22–25 Edwards G, Guy A (2015). Connections between Twitter Spammer Categories. In: 5th Workshop on making sense of microposts @WWW2015. May 18th, 2015, Florence, Italy, pp 22–25
go back to reference Fire M, Katz G, Elovici Y (2012). Strangers intrusion detection—detecting spammers and fake profiles in social networks based on topology anomalies. Technical report Fire M, Katz G, Elovici Y (2012). Strangers intrusion detection—detecting spammers and fake profiles in social networks based on topology anomalies. Technical report
go back to reference Flores M, Kuzmanovic A (2013). Searching for spam: detecting fraudulent accounts via web search. In: Lecture notes in computer science (LNCS), vol 7799. Springer, Berlin, pp 208–217. doi:10.1007/978-3-642-36516-4_21 Flores M, Kuzmanovic A (2013). Searching for spam: detecting fraudulent accounts via web search. In: Lecture notes in computer science (LNCS), vol 7799. Springer, Berlin, pp 208–217. doi:10.​1007/​978-3-642-36516-4_​21
go back to reference Grier C, Thomas K, Paxson V, Zhang M (2010) @spam: the underground on 140 characters or less. In: Proceedings of the 17th ACM conference on computer and communications security, October 04–08, 2010, Chicago, Illinois, USA. doi:10.1145/1866307.1866311 Grier C, Thomas K, Paxson V, Zhang M (2010) @spam: the underground on 140 characters or less. In: Proceedings of the 17th ACM conference on computer and communications security, October 04–08, 2010, Chicago, Illinois, USA. doi:10.​1145/​1866307.​1866311
go back to reference Hammami M, Chahir Y, Chen L (2006) Webguard: a web filtering engine combining textual, structural, and visual content-based analysis. IEEE Trans Knowl Data Eng 18(2):272–284. doi:10.1109/TKDE.2006.34 CrossRef Hammami M, Chahir Y, Chen L (2006) Webguard: a web filtering engine combining textual, structural, and visual content-based analysis. IEEE Trans Knowl Data Eng 18(2):272–284. doi:10.​1109/​TKDE.​2006.​34 CrossRef
go back to reference Hansen D, Shneiderman B, Smith M (2009) Analyzing social media networks: learning by doing with NodeXL Hansen D, Shneiderman B, Smith M (2009) Analyzing social media networks: learning by doing with NodeXL
go back to reference Hepple M, Ireson N, Allegrini P, Marchi S, Montemagni S, Maria J, Hidalgo G (2004) NLP-enhanced content filtering within the POESIA project. In: Proceedings of the 4th international conference on language resources and evaluation (LREC) Hepple M, Ireson N, Allegrini P, Marchi S, Montemagni S, Maria J, Hidalgo G (2004) NLP-enhanced content filtering within the POESIA project. In: Proceedings of the 4th international conference on language resources and evaluation (LREC)
go back to reference Lee K, Caverlee J, Webb S (2010) Uncovering social spammers: social honeypots + machine learning. In: Proceedings of the 33rd international ACM SIGIR conference on research and development in information retrieval, July 19–23, 2010, Geneva, Switzerland. doi:10.1145/1835449.1835522 Lee K, Caverlee J, Webb S (2010) Uncovering social spammers: social honeypots + machine learning. In: Proceedings of the 33rd international ACM SIGIR conference on research and development in information retrieval, July 19–23, 2010, Geneva, Switzerland. doi:10.​1145/​1835449.​1835522
go back to reference Lopes APB, de Avila SEF, Peixoto ANA, Oliveira RS, de Araújo A (2009) A bag-of-features approach based on hue-sift descriptor for nude detection. In Proceedings of the 17th European signal processing conference, Glasgow, Scotland, pp 1552–1556 Lopes APB, de Avila SEF, Peixoto ANA, Oliveira RS, de Araújo A (2009) A bag-of-features approach based on hue-sift descriptor for nude detection. In Proceedings of the 17th European signal processing conference, Glasgow, Scotland, pp 1552–1556
go back to reference Segal MR (2003) Machine learning benchmarks and random forest regression. Technical report, center for bioinformatics and molecular biostatistics. April 14, 2003. pp 1–14 Segal MR (2003) Machine learning benchmarks and random forest regression. Technical report, center for bioinformatics and molecular biostatistics. April 14, 2003. pp 1–14
go back to reference Stringhini G, Kruegel C, Vigna G (2010). Detecting spammers on social networks. In Proceedings of the 26th annual computer security applications conference (ACSAC’10), University of California, Santa Barbara, Austin, Texas USA, ACM, pp 1–9, 2010. doi:10.1145/1920261.1920263 Stringhini G, Kruegel C, Vigna G (2010). Detecting spammers on social networks. In Proceedings of the 26th annual computer security applications conference (ACSAC’10), University of California, Santa Barbara, Austin, Texas USA, ACM, pp 1–9, 2010. doi:10.​1145/​1920261.​1920263
go back to reference Wang HA (2010). Don’t follow me: spam detection in twitter. In: Proceedings of the 2010 international conference on security and cryptography (SECRYPT), IEEE, pp 1–10. doi:10.5220/0002996201420151 Wang HA (2010). Don’t follow me: spam detection in twitter. In: Proceedings of the 2010 international conference on security and cryptography (SECRYPT), IEEE, pp 1–10. doi:10.​5220/​0002996201420151​
go back to reference Xing X, Liang Yu-Li, Cheng H, Dang J, Huang S, Han R, Liu X, Lv Q, Mishra S (2011) SafeVchat: detecting obscene content and misbehaving users in online video chat services. In: Proceedings of the 20th international conference on World Wide Web, March 28–April 01, 2011, Hyderabad, India. doi:10.1145/1963405.1963501 Xing X, Liang Yu-Li, Cheng H, Dang J, Huang S, Han R, Liu X, Lv Q, Mishra S (2011) SafeVchat: detecting obscene content and misbehaving users in online video chat services. In: Proceedings of the 20th international conference on World Wide Web, March 28–April 01, 2011, Hyderabad, India. doi:10.​1145/​1963405.​1963501
Metadata
Title
Behavioral analysis and classification of spammers distributing pornographic content in social media
Authors
Monika Singh
Divya Bansal
Sanjeev Sofat
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0350-0

Premium Partner