Skip to main content
Top
Published in: International Journal of Mechanics and Materials in Design 4/2019

26-11-2018

Benchmark analysis of piezoelectric bimorph energy harvesters composed of laminated composite beam substrates

Authors: B. K. Jha, M. C. Ray

Published in: International Journal of Mechanics and Materials in Design | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper is concerned with the derivation of exact solutions for the responses of piezoelectric bimorph energy harvesters composed of laminated composite beam substrates. An electro-elastic finite element model is also developed based on the layer wise first order shear deformation theory for computing the responses of the bimorphs under general boundary and loading conditions. Both series and parallel connections of the piezoelectric layers of the bimorphs are considered. The responses computed by the finite element model excellently match with that obtained by the exact solutions. The induced electric potential in case of the bimorph in which the piezoelectric layers are connected in series is significantly larger than that in case of the bimorph with piezoelectric layers connected in parallel. If the thickness of the piezoelectric layers and the substrate remain same, the piezoelectric bimorph composed of antisymmetric angle-ply substrate beam is capable of inducing more electric potential than the bimorphs with cross-ply substrate beams. Also, if the bimorph is cantilever, it induces significantly more electric potential than when it is simply supported. Optimum thickness of the piezoelectric layers of the bimorph and unimorph harvesters has been determined. Most importantly, it is found that the bimorph with its piezoelectric layers connected in series performs significantly better than the unimorph if the mass and volume of the piezoelectric layers and the substrates remain same. The results presented here may serve as the benchmark results for verifying experimental and numerical models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amini, Y., Emdad, H., Farid, M.: Finite element modeling of functionally graded piezoelectric harvesters. Compos. Struct. 129, 165–176 (2015)CrossRef Amini, Y., Emdad, H., Farid, M.: Finite element modeling of functionally graded piezoelectric harvesters. Compos. Struct. 129, 165–176 (2015)CrossRef
go back to reference Chen, Xu-rui, Yang, Tong-qing, Wang, W., Yao, Xi: Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceram. Int. 38S, S271–S274 (2012)CrossRef Chen, Xu-rui, Yang, Tong-qing, Wang, W., Yao, Xi: Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceram. Int. 38S, S271–S274 (2012)CrossRef
go back to reference Danesh-Yazdi, A.H., Elvin, N., Andreopoulos, Y.: Green’s function method for piezoelectric energy harvesting beams. J. Sound Vib. 333, 3092–3108 (2014)CrossRef Danesh-Yazdi, A.H., Elvin, N., Andreopoulos, Y.: Green’s function method for piezoelectric energy harvesting beams. J. Sound Vib. 333, 3092–3108 (2014)CrossRef
go back to reference De Marqui Junior, C., Erturk, A., Inman, D.J.: An electromechanical finite element model for piezoelectric energy harvester plates. J. Sound Vib. 327, 9–25 (2009)CrossRef De Marqui Junior, C., Erturk, A., Inman, D.J.: An electromechanical finite element model for piezoelectric energy harvester plates. J. Sound Vib. 327, 9–25 (2009)CrossRef
go back to reference DuToit, N.E., Wardle, B.L.: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA 45(5), 1126–1137 (2007)CrossRef DuToit, N.E., Wardle, B.L.: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA 45(5), 1126–1137 (2007)CrossRef
go back to reference Elvin, N., Erturk, A.: Advances in Energy Harvesting Methods. Springer, New York (2013)CrossRef Elvin, N., Erturk, A.: Advances in Energy Harvesting Methods. Springer, New York (2013)CrossRef
go back to reference Erturk, A., Inman, D.J.: Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater. Struct. 17, 065016 (2008b)CrossRef Erturk, A., Inman, D.J.: Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater. Struct. 17, 065016 (2008b)CrossRef
go back to reference Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. ASME J. Vib. Acoust. 130(4), 041002-1–041002-15 (2008a)CrossRef Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. ASME J. Vib. Acoust. 130(4), 041002-1–041002-15 (2008a)CrossRef
go back to reference Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)CrossRef Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)CrossRef
go back to reference Erturk, A., Renno, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20, 529–544 (2008)CrossRef Erturk, A., Renno, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20, 529–544 (2008)CrossRef
go back to reference Guan, M.J., Liao, W.H.: On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages. Smart Mater. Struct. 16, 498 (2007)CrossRef Guan, M.J., Liao, W.H.: On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages. Smart Mater. Struct. 16, 498 (2007)CrossRef
go back to reference Kundu, S., Nemade, H.B.: Modeling and simulation of a Piezoelectric vibration energy harvester. Proc. Eng. 144, 568–575 (2016)CrossRef Kundu, S., Nemade, H.B.: Modeling and simulation of a Piezoelectric vibration energy harvester. Proc. Eng. 144, 568–575 (2016)CrossRef
go back to reference Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79(3), 1727–1743 (2014)CrossRef Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79(3), 1727–1743 (2014)CrossRef
go back to reference Mam, K., Peigney, M., Siegert, D.: Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations. J. Sound Vib. 389, 411–437 (2017)CrossRef Mam, K., Peigney, M., Siegert, D.: Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations. J. Sound Vib. 389, 411–437 (2017)CrossRef
go back to reference Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 167–184 (2007)CrossRef Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 167–184 (2007)CrossRef
go back to reference Reddy, J.N.: Mechanics of Laminated Composite Plates, Theory, and Analysis. CRC Press, Boca Raton (1997)MATH Reddy, J.N.: Mechanics of Laminated Composite Plates, Theory, and Analysis. CRC Press, Boca Raton (1997)MATH
go back to reference Rosa, M., De Marqui Junior, C.: Modeling and analysis of a piezoelectric energy harvester with varying cross section. Shock Vib. 2014, Article No. 930503 (2014) Rosa, M., De Marqui Junior, C.: Modeling and analysis of a piezoelectric energy harvester with varying cross section. Shock Vib. 2014, Article No. 930503 (2014)
go back to reference Roundy, S.: On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16(10), 809–823 (2005)CrossRef Roundy, S.: On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16(10), 809–823 (2005)CrossRef
go back to reference Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K., Sundararajan, V.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4(1), 28–36 (2005)CrossRef Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K., Sundararajan, V.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4(1), 28–36 (2005)CrossRef
go back to reference Satya, A., Bowen, C.R., Kim, H.A., Rysak, A., Litak, G.: Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50(8), 1961–1970 (2015)CrossRef Satya, A., Bowen, C.R., Kim, H.A., Rysak, A., Litak, G.: Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50(8), 1961–1970 (2015)CrossRef
go back to reference Shu, Y.C., Lien, I.C.: Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499–1512 (2006)CrossRef Shu, Y.C., Lien, I.C.: Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499–1512 (2006)CrossRef
go back to reference Smith, W.A., Auld, B.A.: Modeling 1–3 composite piezoelectrics: thickness mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 31, 40–47 (1991)CrossRef Smith, W.A., Auld, B.A.: Modeling 1–3 composite piezoelectrics: thickness mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 31, 40–47 (1991)CrossRef
go back to reference Sodano, H.A., Inman, D.J.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40(2), 49–58 (2004)CrossRef Sodano, H.A., Inman, D.J.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40(2), 49–58 (2004)CrossRef
go back to reference Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004)CrossRef Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004)CrossRef
go back to reference Tan, T., Yan, Z., Hajj, M.: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters. Appl. Phys. Lett. 109(10), 101908 (2016)CrossRef Tan, T., Yan, Z., Hajj, M.: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters. Appl. Phys. Lett. 109(10), 101908 (2016)CrossRef
go back to reference Xei, X.D., Wang, Q.: A study on a high efficient cylinder composite piezoelectric energy harvester. Compos. Struct. 161, 237–245 (2017)CrossRef Xei, X.D., Wang, Q.: A study on a high efficient cylinder composite piezoelectric energy harvester. Compos. Struct. 161, 237–245 (2017)CrossRef
go back to reference Yan, Z., Hajj, M.R.: Nonlinear performance of an auto parametric vibration-based piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 28(2), 254–271 (2017)CrossRef Yan, Z., Hajj, M.R.: Nonlinear performance of an auto parametric vibration-based piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 28(2), 254–271 (2017)CrossRef
go back to reference Yang, W., Towfighian, S.: A hybrid nonlinear vibration energy system. Mech. Syst. Signal Process. 90, 317–333 (2017)CrossRef Yang, W., Towfighian, S.: A hybrid nonlinear vibration energy system. Mech. Syst. Signal Process. 90, 317–333 (2017)CrossRef
go back to reference Zhang, L., Williams, K.A., Xei, Z.: evaluation of analytical and finite element modeling on coupled field dynamics of piezoelectric cantilever bimorph harvester. Appl. Mech. Mater. 284–287, 1846–1850 (2013a)CrossRef Zhang, L., Williams, K.A., Xei, Z.: evaluation of analytical and finite element modeling on coupled field dynamics of piezoelectric cantilever bimorph harvester. Appl. Mech. Mater. 284–287, 1846–1850 (2013a)CrossRef
go back to reference Zhang, L., Williams, K.A., Xei, Z.: Evaluation of analytical and finite element modeling on coupled field dynamics of piezoelectric cantilever bimorph harvester. Trans. Can. Soc. Mech. Eng. 37(3), 621–629 (2013b)CrossRef Zhang, L., Williams, K.A., Xei, Z.: Evaluation of analytical and finite element modeling on coupled field dynamics of piezoelectric cantilever bimorph harvester. Trans. Can. Soc. Mech. Eng. 37(3), 621–629 (2013b)CrossRef
go back to reference Zhang, L., Williams, K.A., Xei, Z.: Development and validation of an enhanced couple field model for PZT cantilever bimorph energy harvester. Math. Prob. Eng. 2013, 980161 (2013c) Zhang, L., Williams, K.A., Xei, Z.: Development and validation of an enhanced couple field model for PZT cantilever bimorph energy harvester. Math. Prob. Eng. 2013, 980161 (2013c)
Metadata
Title
Benchmark analysis of piezoelectric bimorph energy harvesters composed of laminated composite beam substrates
Authors
B. K. Jha
M. C. Ray
Publication date
26-11-2018
Publisher
Springer Netherlands
Published in
International Journal of Mechanics and Materials in Design / Issue 4/2019
Print ISSN: 1569-1713
Electronic ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-018-9434-5

Other articles of this Issue 4/2019

International Journal of Mechanics and Materials in Design 4/2019 Go to the issue

Premium Partners