Skip to main content
Top

2018 | OriginalPaper | Chapter

Benchmarking Approaches for the Multidisciplinary Analysis of Complex Systems Using a Taylor Series-Based Scalable Problem

Authors : Shamsheer S. Chauhan, John T. Hwang, Joaquim R. R. A. Martins

Published in: Advances in Structural and Multidisciplinary Optimization

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the practical use of multidisciplinary design optimization, the prevalent approach for the multidisciplinary analyses (MDA) is nonlinear block Gauss–Seidel iteration, which consists in solving each discipline in a sequential manner, and repeating this sequence until convergence. This approach is easy to implement but often exhibits slow convergence rates or does not converge at all. An alternative is to use approaches based on Newton’s method to solve the coupled system, also known as tightly coupled or monolithic approaches. Past work, especially in the field of fluid-structure interaction, shows that Newton-based tightly coupled approaches can be more efficient and robust than loosely coupled approaches for the analyses of coupled systems. With the computing power and methods currently available, it is expected that the application of MDA and MDO to systems of greater complexity in terms of coupling and number of disciplines will increase. This makes it important to compare loosely and tightly coupled approaches for complex systems. To address the lack of literature providing such comparisons, we use a novel and highly flexible Taylor series-based analytical scalable problem with OpenMDAO—an open-source framework for MDA and MDO—to compare coupled Newton and nonlinear block Gauss–Seidel approaches for complex systems. We find that assembly time of the linear systems involved, linear solver efficiency, and strength of coupling in the problem play a major role in determining which approach is more efficient for a given problem. We also observe that the coupled Newton approaches are more robust and scale better than the nonlinear block Gauss–Seidel approaches as the strength of coupling between components increases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Martins, J.R.R.A., Lambe, A.B.: Multidisciplinary design optimization: a survey of architectures. AIAA J. 51(9), 2049–2075 (2013)CrossRef Martins, J.R.R.A., Lambe, A.B.: Multidisciplinary design optimization: a survey of architectures. AIAA J. 51(9), 2049–2075 (2013)CrossRef
2.
go back to reference Cervera, M., Codina, R., Galindo, M.: On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems. Eng. Comput. 13(6), 4–30 (1996)CrossRefMATH Cervera, M., Codina, R., Galindo, M.: On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems. Eng. Comput. 13(6), 4–30 (1996)CrossRefMATH
3.
go back to reference Maute, K., Nikbay, M., Farhat, C.: Coupled analytical sensitivity analysis and optimization of three-dimensional nonlinear aeroelastic systems. AIAA J. 39(11), 2051–2061 (2001)CrossRefMATH Maute, K., Nikbay, M., Farhat, C.: Coupled analytical sensitivity analysis and optimization of three-dimensional nonlinear aeroelastic systems. AIAA J. 39(11), 2051–2061 (2001)CrossRefMATH
4.
go back to reference Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)CrossRefMATH Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)CrossRefMATH
5.
go back to reference Heil, M., Hazel, A.L., Boyle, J.: Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Comput. Mech. 43(1), 91–101 (2008)CrossRefMATH Heil, M., Hazel, A.L., Boyle, J.: Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Comput. Mech. 43(1), 91–101 (2008)CrossRefMATH
6.
go back to reference Nikbay, M., Öncü, L., Aysan, A.: Multidisciplinary code coupling for analysis and optimization of aeroelastic systems. J. Aircr. 46(6), 1938–1944 (2009)CrossRef Nikbay, M., Öncü, L., Aysan, A.: Multidisciplinary code coupling for analysis and optimization of aeroelastic systems. J. Aircr. 46(6), 1938–1944 (2009)CrossRef
7.
go back to reference Joosten, M.M., Dettmer, W.G., Peri, D.: Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction. Int. J. Numer. Meth. Eng. 78(7), 757–778 (2009)MathSciNetCrossRefMATH Joosten, M.M., Dettmer, W.G., Peri, D.: Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction. Int. J. Numer. Meth. Eng. 78(7), 757–778 (2009)MathSciNetCrossRefMATH
8.
go back to reference Keyes, D.E., McInnes, L.C., Woodward, C., Gropp, W.D., Myra, E., Pernice, M.: Multiphysics simulations: challenges and opportunities. Int. J. High Perform. Comput. Appl. 27(1), 4–83 (2012)CrossRef Keyes, D.E., McInnes, L.C., Woodward, C., Gropp, W.D., Myra, E., Pernice, M.: Multiphysics simulations: challenges and opportunities. Int. J. High Perform. Comput. Appl. 27(1), 4–83 (2012)CrossRef
9.
go back to reference Hwang, J.T., Lee, D.Y., Cutler, J.W., Martins, J.R.R.A.: Large-scale multidisciplinary optimization of a small satellite’s design and operation. J. Spacecraft Rockets 51(5), 1648–1663 (2014)CrossRef Hwang, J.T., Lee, D.Y., Cutler, J.W., Martins, J.R.R.A.: Large-scale multidisciplinary optimization of a small satellite’s design and operation. J. Spacecraft Rockets 51(5), 1648–1663 (2014)CrossRef
10.
go back to reference Gray, J.S., Hearn, T.A., Moore, K.T., Hwang, J.T., Martins, J.R.R.A., Ning, A.: Automatic evaluation of multidisciplinary derivatives using a graph-based problem formulation in OpenMDAO. In: 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA AVIATION Forum. AIAA, June 2014 Gray, J.S., Hearn, T.A., Moore, K.T., Hwang, J.T., Martins, J.R.R.A., Ning, A.: Automatic evaluation of multidisciplinary derivatives using a graph-based problem formulation in OpenMDAO. In: 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA AVIATION Forum. AIAA, June 2014
11.
go back to reference Arian, E.: Convergence estimates for multidisciplinary analysis and optimization. Technical report NASA/CR-97-201752, NAS 1.26:201752, ICASE-97-57, Institute for Computer Applications in Science and Engineering, Hampton, VA United States (1997) Arian, E.: Convergence estimates for multidisciplinary analysis and optimization. Technical report NASA/CR-97-201752, NAS 1.26:201752, ICASE-97-57, Institute for Computer Applications in Science and Engineering, Hampton, VA United States (1997)
12.
go back to reference Heil, M.: An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Comput. Meth. Appl. Mech. Eng. 193(12), 1–23 (2004)MathSciNetCrossRefMATH Heil, M.: An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Comput. Meth. Appl. Mech. Eng. 193(12), 1–23 (2004)MathSciNetCrossRefMATH
13.
go back to reference Barcelos, M., Bavestrello, H., Maute, K.: A Schur-Newton-Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis. Comput. Meth. Appl. Mech. Eng. 195(1718), 2050–2069 (2006). Fluid-Structure Interaction Barcelos, M., Bavestrello, H., Maute, K.: A Schur-Newton-Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis. Comput. Meth. Appl. Mech. Eng. 195(1718), 2050–2069 (2006). Fluid-Structure Interaction
14.
go back to reference Fernandez, M.A., Moubachir, M.: A Newton method using exact Jacobians for solving fluid-structure coupling. Comput. Struct. 83(23), 127–142 (2005)CrossRef Fernandez, M.A., Moubachir, M.: A Newton method using exact Jacobians for solving fluid-structure coupling. Comput. Struct. 83(23), 127–142 (2005)CrossRef
15.
go back to reference Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38(4), 310–322 (2006)MathSciNetCrossRefMATH Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38(4), 310–322 (2006)MathSciNetCrossRefMATH
16.
go back to reference Sheldon, J.P., Miller, T.S., Pitt, J.S.: Methodology for comparing coupling algorithms for fluid-structure interaction problems. World J. Mech. 4(2), 54–70 (2014) Sheldon, J.P., Miller, T.S., Pitt, J.S.: Methodology for comparing coupling algorithms for fluid-structure interaction problems. World J. Mech. 4(2), 54–70 (2014)
17.
go back to reference Turek, S., Hron, J.: Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow. Springer, Heidelberg (2006)CrossRefMATH Turek, S., Hron, J.: Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow. Springer, Heidelberg (2006)CrossRefMATH
18.
go back to reference Kenway, G.K.W., Kennedy, G.J., Martins, J.R.R.A.: Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA J. 52(5), 935–951 (2014)CrossRef Kenway, G.K.W., Kennedy, G.J., Martins, J.R.R.A.: Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA J. 52(5), 935–951 (2014)CrossRef
19.
go back to reference Hwang, J.T., Martins, J.R.R.A.: A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives. ACM Trans. Math. Softw. (2017, Accepted subject to revisions) Hwang, J.T., Martins, J.R.R.A.: A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives. ACM Trans. Math. Softw. (2017, Accepted subject to revisions)
20.
go back to reference Padula, S., Alexandrov, N., Green L.: MDO test suite at NASA langley research center. In: 6th Symposium on Multidisciplinary Analysis and Optimization, Multidisciplinary Analysis Optimization Conferences. American Institute of Aeronautics and Astronautics, September 1996 Padula, S., Alexandrov, N., Green L.: MDO test suite at NASA langley research center. In: 6th Symposium on Multidisciplinary Analysis and Optimization, Multidisciplinary Analysis Optimization Conferences. American Institute of Aeronautics and Astronautics, September 1996
21.
go back to reference Balling, R., Wilkinson, C.: Execution of multidisciplinary design optimization approaches on common test problems. AIAA J. 35(1), 178–186 (1997)CrossRefMATH Balling, R., Wilkinson, C.: Execution of multidisciplinary design optimization approaches on common test problems. AIAA J. 35(1), 178–186 (1997)CrossRefMATH
22.
go back to reference Kodiyalam, S., Yuan, C.: Evaluation of methods for multidisciplinary design optimization, phase I. Technical report, National Aeronautics and Space Administration (1998) Kodiyalam, S., Yuan, C.: Evaluation of methods for multidisciplinary design optimization, phase I. Technical report, National Aeronautics and Space Administration (1998)
23.
go back to reference Yi, S.I., Shin, J.K., Park, G.J.: Comparison of MDO methods with mathematical examples. Struct. Multi. Optim. 35(5), 391–402 (2008)CrossRef Yi, S.I., Shin, J.K., Park, G.J.: Comparison of MDO methods with mathematical examples. Struct. Multi. Optim. 35(5), 391–402 (2008)CrossRef
24.
go back to reference Tosserams, S., Etman, L.F.P., Rooda, J.E.: A micro-accelerometer MDO benchmark problem. Struct. Multi. Optim. 41(2), 255–275 (2010)CrossRefMATH Tosserams, S., Etman, L.F.P., Rooda, J.E.: A micro-accelerometer MDO benchmark problem. Struct. Multi. Optim. 41(2), 255–275 (2010)CrossRefMATH
25.
go back to reference Tedford, N.P., Martins, J.R.R.A.: Benchmarking multidisciplinary design optimization algorithms. Optim. Eng. 11(1), 159–183 (2010)MathSciNetCrossRefMATH Tedford, N.P., Martins, J.R.R.A.: Benchmarking multidisciplinary design optimization algorithms. Optim. Eng. 11(1), 159–183 (2010)MathSciNetCrossRefMATH
26.
go back to reference Hwang, J.T., Martins, J.R.R.A.: Allocation-mission-design optimization of next-generation aircraft using a parallel computational framework. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum. AIAA, January 2016 Hwang, J.T., Martins, J.R.R.A.: Allocation-mission-design optimization of next-generation aircraft using a parallel computational framework. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum. AIAA, January 2016
27.
go back to reference Mosher, T.: Conceptual spacecraft design using a genetic algorithm trade selection process. J. Airc. 36(1), 200–208 (1999)CrossRef Mosher, T.: Conceptual spacecraft design using a genetic algorithm trade selection process. J. Airc. 36(1), 200–208 (1999)CrossRef
28.
go back to reference Hu, X., Chen, X., Lattarulo, V., Parks, G.T.: Multidisciplinary optimization under high-dimensional uncertainty for small satellite system design. AIAA J. 54(5), 1732–1741 (2016)CrossRef Hu, X., Chen, X., Lattarulo, V., Parks, G.T.: Multidisciplinary optimization under high-dimensional uncertainty for small satellite system design. AIAA J. 54(5), 1732–1741 (2016)CrossRef
29.
go back to reference Ning, A., Petch, D.: Integrated design of downwind land-based wind turbines using analytic gradients. Wind Energ. 19(12), 2137–2152 (2016). we.1972 Ning, A., Petch, D.: Integrated design of downwind land-based wind turbines using analytic gradients. Wind Energ. 19(12), 2137–2152 (2016). we.1972
30.
go back to reference Steward, D.V.: The design structure system: a method for managing the design of complex systems. IEEE Trans. Eng. Manage. EM-28(3), 71–74 (1981) Steward, D.V.: The design structure system: a method for managing the design of complex systems. IEEE Trans. Eng. Manage. EM-28(3), 71–74 (1981)
31.
go back to reference Lambe, A.B., Martins, J.R.R.A.: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct. Multi. Optim. 46(2), 273–284 (2012)CrossRefMATH Lambe, A.B., Martins, J.R.R.A.: Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct. Multi. Optim. 46(2), 273–284 (2012)CrossRefMATH
32.
go back to reference Peterson, P.: F2PY: a tool for connecting Fortran and Python programs. Int. J. Comput. Sci. Eng. 4(4), 296–305 (2009)CrossRef Peterson, P.: F2PY: a tool for connecting Fortran and Python programs. Int. J. Comput. Sci. Eng. 4(4), 296–305 (2009)CrossRef
33.
go back to reference Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient Management of Parallelism in Object Oriented Numerical Software Libraries, pp. 163–202. Birkhäuser Press, Base (1997) Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient Management of Parallelism in Object Oriented Numerical Software Libraries, pp. 163–202. Birkhäuser Press, Base (1997)
35.
go back to reference Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001) Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001)
36.
go back to reference Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972) Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)
37.
go back to reference Nuutila, E., Soisalon-Soininen, E.: On finding the strongly connected components in a directed graph. Inf. Process. Lett. 49(1), 9–14 (1994)MathSciNetCrossRefMATH Nuutila, E., Soisalon-Soininen, E.: On finding the strongly connected components in a directed graph. Inf. Process. Lett. 49(1), 9–14 (1994)MathSciNetCrossRefMATH
38.
go back to reference Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, USA, August 2008, pp. 11–15 Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, USA, August 2008, pp. 11–15
39.
go back to reference Shaja, A.S., Sudhakar, K.: Optimized sequencing of analysis components in multidisciplinary systems. Res. Eng. Des. 21(3), 173–187 (2010)CrossRef Shaja, A.S., Sudhakar, K.: Optimized sequencing of analysis components in multidisciplinary systems. Res. Eng. Des. 21(3), 173–187 (2010)CrossRef
40.
go back to reference Irons, B.M., Tuck, R.C.: A version of the Aitken accelerator for computer iteration. Int. J. Numer. Meth. Eng. 1(3), 275–277 (1969)CrossRefMATH Irons, B.M., Tuck, R.C.: A version of the Aitken accelerator for computer iteration. Int. J. Numer. Meth. Eng. 1(3), 275–277 (1969)CrossRefMATH
41.
go back to reference Gundersen, T., Hertzberg, T.: Partitioning and tearing of networks applied to process flowsheeting. Model. Ident. Contr. Norw. Res. Bull. 4(3), 139–165 (1983)CrossRef Gundersen, T., Hertzberg, T.: Partitioning and tearing of networks applied to process flowsheeting. Model. Ident. Contr. Norw. Res. Bull. 4(3), 139–165 (1983)CrossRef
42.
go back to reference Baharev, A., Schichl, H., Neumaier, A., Achterberg, T.: An exact method for the minimum feedback arc set problem. University of Vienna (2015) Baharev, A., Schichl, H., Neumaier, A., Achterberg, T.: An exact method for the minimum feedback arc set problem. University of Vienna (2015)
Metadata
Title
Benchmarking Approaches for the Multidisciplinary Analysis of Complex Systems Using a Taylor Series-Based Scalable Problem
Authors
Shamsheer S. Chauhan
John T. Hwang
Joaquim R. R. A. Martins
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67988-4_7

Premium Partners