Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2024

29-02-2024

Bending Analysis of Laminated Composite and Sandwich Cylindrical Shells Using Analytical Method and Ansys Calculations

Authors: A. Attia, A. T. Berrabah, F. Bourada, A. A. Bousahla, A. Tounsi, M. H. Ghazwani, A. Alnujaie

Published in: Mechanics of Composite Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The bending analysis of isotropic, laminated composite and cylindrical sandwich shells was carried out using a higher order shear deformation theory which incorporates undetermined integral in the displacement field. The model proposed involves only four variables. Moreover, unlike the conventional FSDTs, the shear correction factor is not necessary. The Hamilton’s principle and the Navier’s method are employed to determine and solve the equations of motion. The present analytical model was compared with other higher-order theories in the literature. In addition, finite element analysis methods were designed to calculate displacements and stresses of shells. Shells are subjected to uniform loads. Results are given for shallow and deep shells and thick to thin. According to the analysis, kinematics, based on the indeterminate integral component, are very effective and enable researchers to investigate laminated plates and shells more accurately than traditional models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Kirchhoff, “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe,” Crelles J., 1850, No. 40, 51-88 (1850).CrossRef G. Kirchhoff, “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe,” Crelles J., 1850, No. 40, 51-88 (1850).CrossRef
2.
go back to reference R. Mindlin, “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,” 18, No. 1, 31-38 (1951). R. Mindlin, “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,” 18, No. 1, 31-38 (1951).
3.
go back to reference K. M. Liew, X. Zhao, and A. J. Ferreira, “A review of meshless methods for laminated and functionally graded plates and shells,” Compos. Struct., 93, No. 8, 2031-2041 (2011).CrossRef K. M. Liew, X. Zhao, and A. J. Ferreira, “A review of meshless methods for laminated and functionally graded plates and shells,” Compos. Struct., 93, No. 8, 2031-2041 (2011).CrossRef
4.
go back to reference A. S. Sayyad and Y. M. Ghugal, “On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results,” Compos. Struct., 129, 177-201 (2015).CrossRef A. S. Sayyad and Y. M. Ghugal, “On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results,” Compos. Struct., 129, 177-201 (2015).CrossRef
5.
go back to reference T. Kant, “A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches,” Compos Struct., 23, No. 4, 293-312 (1993).ADSCrossRef T. Kant, “A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches,” Compos Struct., 23, No. 4, 293-312 (1993).ADSCrossRef
6.
go back to reference E. Carrera, “Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking,” Archives of Computational Methods in Eng.., 10, No.3, 215-296 (2003).MathSciNetCrossRef E. Carrera, “Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking,” Archives of Computational Methods in Eng.., 10, No.3, 215-296 (2003).MathSciNetCrossRef
7.
go back to reference S. S. Sahoo, C. K. Hirwani, S. K. Panda, and D. Sen, “Numerical analysis of vibration and transient behavior of laminated composite curved shallow shell structure, an experimental validation,” Scientia Iranica., 25, No. 4, 2218-2232 (2018). S. S. Sahoo, C. K. Hirwani, S. K. Panda, and D. Sen, “Numerical analysis of vibration and transient behavior of laminated composite curved shallow shell structure, an experimental validation,” Scientia Iranica., 25, No. 4, 2218-2232 (2018).
8.
go back to reference S. S. Sahoo, S. K. Panda, and T. R. Mahapatra, “Static, free vibration and transient response of laminated composite curved shallow panel–an experimental approach,” Eur. J. Mech.-A/Solids., 59, 95-113 (2016).ADSMathSciNetCrossRef S. S. Sahoo, S. K. Panda, and T. R. Mahapatra, “Static, free vibration and transient response of laminated composite curved shallow panel–an experimental approach,” Eur. J. Mech.-A/Solids., 59, 95-113 (2016).ADSMathSciNetCrossRef
9.
go back to reference S. S. Sahoo, S. K. Panda, and V. K. Singh, “Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate,” Proc. of the Institution of Mech. Engineers, Part L: J. Mater.: Design and Applications., 231, No. 5, 463-478 (2017). S. S. Sahoo, S. K. Panda, and V. K. Singh, “Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate,” Proc. of the Institution of Mech. Engineers, Part L: J. Mater.: Design and Applications., 231, No. 5, 463-478 (2017).
10.
go back to reference J. N. Reddy and C. F. Liu, “A higher-order shear deformation theory of laminated elastic shells,” Int. J. Eng. Sci., 23, 319-330 (1985).CrossRef J. N. Reddy and C. F. Liu, “A higher-order shear deformation theory of laminated elastic shells,” Int. J. Eng. Sci., 23, 319-330 (1985).CrossRef
11.
go back to reference S. M. R. Khalili, A. Davar, and K. M. Fard, “Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory,” Int. J. Mech. Sci., 56, 1-25 (2012).CrossRef S. M. R. Khalili, A. Davar, and K. M. Fard, “Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory,” Int. J. Mech. Sci., 56, 1-25 (2012).CrossRef
12.
go back to reference J. L. Mantari and C. G. Soares, “Analysis of isotropic and multilayered plates and shells by using a generalized higherorder shear deformation theory,” Compos. Struct., 94, No. 8, 2640-2656 (2012).CrossRef J. L. Mantari and C. G. Soares, “Analysis of isotropic and multilayered plates and shells by using a generalized higherorder shear deformation theory,” Compos. Struct., 94, No. 8, 2640-2656 (2012).CrossRef
13.
go back to reference J. L. Mantari and C. G. Soares, “Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells,” Compos. Part B., 56, 126-136 (2014).CrossRef J. L. Mantari and C. G. Soares, “Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells,” Compos. Part B., 56, 126-136 (2014).CrossRef
14.
go back to reference E. Viola, F. Tornabene, and N. Fantuzzi, “Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories,” Compos. Struct., 101, 59-93 (2013).CrossRef E. Viola, F. Tornabene, and N. Fantuzzi, “Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories,” Compos. Struct., 101, 59-93 (2013).CrossRef
15.
go back to reference F. Tornabene and E. Viola, “Static analysis of functionally graded doubly-curved shells and panels of revolution,” Meccanica, 48, 901-930 (2013).MathSciNetCrossRef F. Tornabene and E. Viola, “Static analysis of functionally graded doubly-curved shells and panels of revolution,” Meccanica, 48, 901-930 (2013).MathSciNetCrossRef
16.
go back to reference F. Tornabene, N. Fantuzzi, E. Viola, and E. Carrera, “Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method,” Compos. Struct., 107, 675-697 (2014).CrossRef F. Tornabene, N. Fantuzzi, E. Viola, and E. Carrera, “Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method,” Compos. Struct., 107, 675-697 (2014).CrossRef
17.
go back to reference F. Tornabene, N. Fantuzzi, and M. Bacciocchi, “On the mechanics of laminated doubly-curved shells subjected to point and line loads,” Int. J. Eng. Sci., 109, 115-164 (2016).MathSciNetCrossRef F. Tornabene, N. Fantuzzi, and M. Bacciocchi, “On the mechanics of laminated doubly-curved shells subjected to point and line loads,” Int. J. Eng. Sci., 109, 115-164 (2016).MathSciNetCrossRef
18.
go back to reference F. Tornabene, N. Fantuzzi, M. Bacciocchi, and J. N. Reddy, “A posteriori stress and strain recovery procedure for the static analysis of laminated shells resting on nonlinear elastic foundation,” Compos., Part B., 126, 162-191 (2017). F. Tornabene, N. Fantuzzi, M. Bacciocchi, and J. N. Reddy, “A posteriori stress and strain recovery procedure for the static analysis of laminated shells resting on nonlinear elastic foundation,” Compos., Part B., 126, 162-191 (2017).
19.
go back to reference T. Kant and K. Swaminathan, “Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory,” Compos. Struct., 56, No. 4, 329-344 (2002).CrossRef T. Kant and K. Swaminathan, “Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory,” Compos. Struct., 56, No. 4, 329-344 (2002).CrossRef
20.
go back to reference J. L. Mantari, A. S. Oktem, and C. G. Soares, “A new higher order shear deformation theory for sandwich and composite laminated plates,” Compos., Part B, 43, No. 3, 1489-1499 (2012).CrossRef J. L. Mantari, A. S. Oktem, and C. G. Soares, “A new higher order shear deformation theory for sandwich and composite laminated plates,” Compos., Part B, 43, No. 3, 1489-1499 (2012).CrossRef
21.
go back to reference K. Mehar, S. K. Panda, and B. K. Patle, “Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel,” Int. J. Appl. Mech., 9, No. 4, 1750046 (2017). K. Mehar, S. K. Panda, and B. K. Patle, “Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel,” Int. J. Appl. Mech., 9, No. 4, 1750046 (2017).
22.
go back to reference P. V. Katariya and S. K. Panda, “Thermal buckling and vibration analysis of laminated composite curved shell panel,” Aircraft Eng. and Aerospace Technol., 88, No. 1, 97-107 (2016).CrossRef P. V. Katariya and S. K. Panda, “Thermal buckling and vibration analysis of laminated composite curved shell panel,” Aircraft Eng. and Aerospace Technol., 88, No. 1, 97-107 (2016).CrossRef
23.
go back to reference M. Nebab, S. Benguediab, H. A. Atmane, and F. Bernard, “A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations,” Geomech. and Eng., 22, No. 5, 415-431 (2020). M. Nebab, S. Benguediab, H. A. Atmane, and F. Bernard, “A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations,” Geomech. and Eng., 22, No. 5, 415-431 (2020).
24.
go back to reference M. Amabili, “Nonlinear vibrations and stability of laminated shells using a modified first-order shear deformation theory,” Eur. J. Mech.-A/Solids., 68, 75-87 (2018).ADSMathSciNetCrossRef M. Amabili, “Nonlinear vibrations and stability of laminated shells using a modified first-order shear deformation theory,” Eur. J. Mech.-A/Solids., 68, 75-87 (2018).ADSMathSciNetCrossRef
25.
go back to reference M. Amabili and J. N. Reddy, “A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells,” Int. J. Non-Linear Mech., 45, No. 4, 409-418 (2010).ADSCrossRef M. Amabili and J. N. Reddy, “A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells,” Int. J. Non-Linear Mech., 45, No. 4, 409-418 (2010).ADSCrossRef
26.
go back to reference M. Amabili and J. N. Reddy, “Nonlinear mechanics of sandwich plates: Layerwise third-order thickness and shear deformation theory,” Compos. Struct., 278, 114693 (2021).CrossRef M. Amabili and J. N. Reddy, “Nonlinear mechanics of sandwich plates: Layerwise third-order thickness and shear deformation theory,” Compos. Struct., 278, 114693 (2021).CrossRef
27.
go back to reference M. Amabili and J. N. Reddy, “The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells,” Compos. Struct., 244, 112265 (2020).CrossRef M. Amabili and J. N. Reddy, “The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells,” Compos. Struct., 244, 112265 (2020).CrossRef
28.
go back to reference M. G. Rivera, J. N. Reddy, and M. Amabili, “A continuum eight‐parameter shell finite element for large deformation analysis,” Mech. Adv. Mater. and Struct., 27, No. 7, 551-560 (2020).CrossRef M. G. Rivera, J. N. Reddy, and M. Amabili, “A continuum eight‐parameter shell finite element for large deformation analysis,” Mech. Adv. Mater. and Struct., 27, No. 7, 551-560 (2020).CrossRef
29.
go back to reference M. Amabili, “A new third-order shear deformation theory with non-linearities in shear for static and dynamic analysis of laminated doubly curved shells,” Compos. Struct., 128, 260-273 (2015).CrossRef M. Amabili, “A new third-order shear deformation theory with non-linearities in shear for static and dynamic analysis of laminated doubly curved shells,” Compos. Struct., 128, 260-273 (2015).CrossRef
30.
go back to reference M. Yaylaci, E. Öner, and A. Birinci, “Comparison between Analytical and ANSYS calculations for a receding contact problem,” J. Eng. Mech., 140, No. 9, 04014070 (2014). M. Yaylaci, E. Öner, and A. Birinci, “Comparison between Analytical and ANSYS calculations for a receding contact problem,” J. Eng. Mech., 140, No. 9, 04014070 (2014).
31.
go back to reference O. Allam, K. Draiche, A. A. Bousahla, F. Bourada, A. Tounsi, K. H. Benrahou, and A. Tounsi, “A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells,” Computers and Concrete, Int. J., 26, No. 2, 185-201 (2020). O. Allam, K. Draiche, A. A. Bousahla, F. Bourada, A. Tounsi, K. H. Benrahou, and A. Tounsi, “A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells,” Computers and Concrete, Int. J., 26, No. 2, 185-201 (2020).
32.
go back to reference N. Reddy, “A simple higher-order theory for laminated composite plates,” J. Appl. Mech., 51, No. 4, 745-752 (1984).ADSCrossRef N. Reddy, “A simple higher-order theory for laminated composite plates,” J. Appl. Mech., 51, No. 4, 745-752 (1984).ADSCrossRef
33.
go back to reference R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, Wiley, Singapore (2000). R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, Wiley, Singapore (2000).
35.
go back to reference B. S. Reddy, A. R. Reddy, J. S. Kumar, and K. V. K. Reddy, “Bending analysis of laminated composite plates using finite element method,” Int. J. Eng., Sci. and Technol., 4, No. 2, 177-190 (2012). B. S. Reddy, A. R. Reddy, J. S. Kumar, and K. V. K. Reddy, “Bending analysis of laminated composite plates using finite element method,” Int. J. Eng., Sci. and Technol., 4, No. 2, 177-190 (2012).
36.
go back to reference E. Asadi, W. Wang, and M. S. Qatu, “Static and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories,” Compos. Struct., 94, No. 2, 494-500 (2012).CrossRef E. Asadi, W. Wang, and M. S. Qatu, “Static and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories,” Compos. Struct., 94, No. 2, 494-500 (2012).CrossRef
37.
go back to reference F. Tornabene, A. Liverani, and G. Caligiana, “Static analysis of laminated composite curved shells and panels of revolution with a posteriori shear and normal stress recovery using generalized differential quadrature method,” Int. J. Mech. Sci., 61, No. 1, 71-87 (2012).CrossRef F. Tornabene, A. Liverani, and G. Caligiana, “Static analysis of laminated composite curved shells and panels of revolution with a posteriori shear and normal stress recovery using generalized differential quadrature method,” Int. J. Mech. Sci., 61, No. 1, 71-87 (2012).CrossRef
38.
go back to reference A. S. Sayyad and Y. M. Ghugal, “Stress analysis of laminated composite and sandwich cylindrical shells using a generalized shell theory,” Compos. Mater. and Eng., 2, No. 2, 103-124 (2020). A. S. Sayyad and Y. M. Ghugal, “Stress analysis of laminated composite and sandwich cylindrical shells using a generalized shell theory,” Compos. Mater. and Eng., 2, No. 2, 103-124 (2020).
39.
go back to reference N. J. Pagano, “Exact solutions for rectangular bidirectional composites and sandwich plates,” J. Compos. Mater., 4, No. 1, 20-34 (1970).ADSCrossRef N. J. Pagano, “Exact solutions for rectangular bidirectional composites and sandwich plates,” J. Compos. Mater., 4, No. 1, 20-34 (1970).ADSCrossRef
40.
go back to reference A. S. Sayyad, and Y. M. Ghugal, “A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates,” Int. J. Mech. Mater. Des., 10, No. 3, 247-267 (2014).CrossRef A. S. Sayyad, and Y. M. Ghugal, “A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates,” Int. J. Mech. Mater. Des., 10, No. 3, 247-267 (2014).CrossRef
Metadata
Title
Bending Analysis of Laminated Composite and Sandwich Cylindrical Shells Using Analytical Method and Ansys Calculations
Authors
A. Attia
A. T. Berrabah
F. Bourada
A. A. Bousahla
A. Tounsi
M. H. Ghazwani
A. Alnujaie
Publication date
29-02-2024
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2024
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-024-10173-7

Other articles of this Issue 1/2024

Mechanics of Composite Materials 1/2024 Go to the issue

Premium Partners