Skip to main content
Top

2024 | OriginalPaper | Chapter

2. Beyond Common Simplifications: Strongly Nonlinear Transient Phenomena

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dynamics of transient strongly nonlinear phenomena develops rapidly, both at fundamental level and in view of multiple current and prospective applications. Intrinsic difficulty of the subject lies in the fact that many common notions and well-developed concepts of nonlinear dynamics, such as steady-state responses, bifurcations, nonlinear normal modes and many others, are not directly relevant, or at least hardly applicable in this sort of problems. Thus, the analysis and understanding of these phenomena require thinking beyond the aforementioned common simplifications. The paper offers a hands-on introduction to two topics within the broader subject of the transient strongly nonlinear phenomena. The first, more common and classical, is the dynamics of escape form classical potential well in conditions of external forcing. The other is an emerging topic of intermodal targeted energy transfer for purposes of enhanced blast and earthquake mitigation. For both topics, the paper presents simple introduction with basic developed examples. Brief descriptions of recent progress are accompanied by appropriate references.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Al–Shudeifat., M. A. (2014). Highly efficient nonlinear energy sink. Nonlinear Dynamics, 76, 1905–1920–4880 Al–Shudeifat., M. A. (2014). Highly efficient nonlinear energy sink. Nonlinear Dynamics, 76, 1905–1920–4880
go back to reference Boechler, N., Theocharis, G., Job, S., Kevrekidis, P. G., Porter, M. A., & Daraio, C. (2010). Discrete breathers in one-dimensional diatomic granular crystals. Physical Review Letters, 104, 244302.CrossRef Boechler, N., Theocharis, G., Job, S., Kevrekidis, P. G., Porter, M. A., & Daraio, C. (2010). Discrete breathers in one-dimensional diatomic granular crystals. Physical Review Letters, 104, 244302.CrossRef
go back to reference Boechler, N., Theocharis, G., & Daraio, C. (2011). Bifurcation-based acoustic switching and rectification. Nature Materials, 10, 665–668.CrossRef Boechler, N., Theocharis, G., & Daraio, C. (2011). Bifurcation-based acoustic switching and rectification. Nature Materials, 10, 665–668.CrossRef
go back to reference Engel, A., Ezra, T., Gendelman, O. V., & Fidlin, A. (2023). Escape of two-DOF dynamical system from the potential well. Nonlinear Dynamics, 111, 3019–3034.CrossRef Engel, A., Ezra, T., Gendelman, O. V., & Fidlin, A. (2023). Escape of two-DOF dynamical system from the potential well. Nonlinear Dynamics, 111, 3019–3034.CrossRef
go back to reference Farid, M., & Gendelman, O. V. (2021). Escape of a forced-damped particle from weakly nonlinear truncated potential well. Nonlinear Dynamics, 103, 63–78.CrossRef Farid, M., & Gendelman, O. V. (2021). Escape of a forced-damped particle from weakly nonlinear truncated potential well. Nonlinear Dynamics, 103, 63–78.CrossRef
go back to reference Fidlin, A. (2006). Nonlinear oscillations in mechanical engineering. Springer, Berlin Fidlin, A. (2006). Nonlinear oscillations in mechanical engineering. Springer, Berlin
go back to reference Genda, A., Fidlin, A., & Gendelman, O. V. (2021). On the escape of a resonantly excited couple of particles from a potential well. Nonlinear Dynamics, 104, 91–102.CrossRef Genda, A., Fidlin, A., & Gendelman, O. V. (2021). On the escape of a resonantly excited couple of particles from a potential well. Nonlinear Dynamics, 104, 91–102.CrossRef
go back to reference Gendelman, O. V. (2018). Escape of a harmonically forced particle from an infinite-range potential well: A transient resonance. Nonlinear Dynamics, 93, 79–88.CrossRef Gendelman, O. V. (2018). Escape of a harmonically forced particle from an infinite-range potential well: A transient resonance. Nonlinear Dynamics, 93, 79–88.CrossRef
go back to reference Gendelman, O. V., & Karmi, G. (2019). Basic mechanisms of escape of a harmonically forced classical particle from a potential well. Nonlinear Dynamics, 98, 2775–2792.CrossRef Gendelman, O. V., & Karmi, G. (2019). Basic mechanisms of escape of a harmonically forced classical particle from a potential well. Nonlinear Dynamics, 98, 2775–2792.CrossRef
go back to reference Gendelman, O. V., & Sapsis, T. P. (2017). Energy exchange and localization in essentially nonlinear oscillatory systems: Canonical formalism. ASME Journal of Applied Mechanics, 84, 011009.CrossRef Gendelman, O. V., & Sapsis, T. P. (2017). Energy exchange and localization in essentially nonlinear oscillatory systems: Canonical formalism. ASME Journal of Applied Mechanics, 84, 011009.CrossRef
go back to reference Gzal, M., Fang, B., Vakakis, A. F., Bergman, L. A., & Gendelman, O. V. (2020). Rapid non-resonant intermodal targeted energy transfer (IMTET) caused by vibro-impact nonlinearity. Nonlinear Dynamics, 101, 2087–2106.CrossRef Gzal, M., Fang, B., Vakakis, A. F., Bergman, L. A., & Gendelman, O. V. (2020). Rapid non-resonant intermodal targeted energy transfer (IMTET) caused by vibro-impact nonlinearity. Nonlinear Dynamics, 101, 2087–2106.CrossRef
go back to reference Gzal, M., Vakakis, A. F., Bergman, L. A., & Gendelman, O. V. (2021). Extreme intermodal energy transfers through vibro-impacts for highly effective and rapid blast mitigation. Communications in Nonlinear Science and Numerical Simulation, 103, 106012.MathSciNetCrossRef Gzal, M., Vakakis, A. F., Bergman, L. A., & Gendelman, O. V. (2021). Extreme intermodal energy transfers through vibro-impacts for highly effective and rapid blast mitigation. Communications in Nonlinear Science and Numerical Simulation, 103, 106012.MathSciNetCrossRef
go back to reference Gzal, M., Carrion, J. E., Al-Shudeifat, M. A., Spencer, B. F., Jr., Conte, J. P., Vakakis, A. F., Bergman, L. A., & Gendelman, O. V. (2023). Seismic mitigation of a benchmark twenty-story steel structure based on intermodal targeted energy transfer (IMTET). Engineering Structures, 283, 115868.CrossRef Gzal, M., Carrion, J. E., Al-Shudeifat, M. A., Spencer, B. F., Jr., Conte, J. P., Vakakis, A. F., Bergman, L. A., & Gendelman, O. V. (2023). Seismic mitigation of a benchmark twenty-story steel structure based on intermodal targeted energy transfer (IMTET). Engineering Structures, 283, 115868.CrossRef
go back to reference Karmi, G., Kravetc, P., & Gendelman, O. V. (2021). Analytic exploration of safe basins in a benchmark problem of forced escape. Nonlinear Dynamics, 106, 1573–1589.CrossRef Karmi, G., Kravetc, P., & Gendelman, O. V. (2021). Analytic exploration of safe basins in a benchmark problem of forced escape. Nonlinear Dynamics, 106, 1573–1589.CrossRef
go back to reference Kravetc, P., & Gendelman, O. V. (2022). Approximation of potential function in the problem of forced escape. Journal of Sound and Vibration, 526, 116765.CrossRef Kravetc, P., & Gendelman, O. V. (2022). Approximation of potential function in the problem of forced escape. Journal of Sound and Vibration, 526, 116765.CrossRef
go back to reference Kremer, D., & Liu, K. (2014). A nonlinear energy sink with an energy harvester: Transient responses. Journal of Sound and Vibration, 333, 4859–4880.CrossRef Kremer, D., & Liu, K. (2014). A nonlinear energy sink with an energy harvester: Transient responses. Journal of Sound and Vibration, 333, 4859–4880.CrossRef
go back to reference Nesterenko, V. F. (2001). Dynamics of heterogeneous materials. New York: Springer.CrossRef Nesterenko, V. F. (2001). Dynamics of heterogeneous materials. New York: Springer.CrossRef
go back to reference Smirnov, V. V., & Manevitch, L. I. (2020). Complex envelope variable approximation in nonlinear dynamics. Russian Journal of Nonlinear Dynamics, 16, 491–515. Smirnov, V. V., & Manevitch, L. I. (2020). Complex envelope variable approximation in nonlinear dynamics. Russian Journal of Nonlinear Dynamics, 16, 491–515.
go back to reference Starosvetsky, Y. (2012). Evolution of the primary pulse in one-dimensional granular crystals subject to on-site perturbations: Analytical study. Physical Review E, 85, 051306.CrossRef Starosvetsky, Y. (2012). Evolution of the primary pulse in one-dimensional granular crystals subject to on-site perturbations: Analytical study. Physical Review E, 85, 051306.CrossRef
go back to reference Tempelman, J. R., Mojahed, A., Gzal, M., Matlack, K. H., Gendelman, O. V., Bergman, L. A., & Vakakis, A. F. (2022). Experimental inter-modal targeted energy transfer in a cantilever beam undergoing Vibro-impacts. Journal of Sound and Vibration, 539, 117212. Tempelman, J. R., Mojahed, A., Gzal, M., Matlack, K. H., Gendelman, O. V., Bergman, L. A., & Vakakis, A. F. (2022). Experimental inter-modal targeted energy transfer in a cantilever beam undergoing Vibro-impacts. Journal of Sound and Vibration, 539, 117212.
go back to reference Vakakis, A. F., Gendelman, O. V., Bergman, L. A., Mojahed, A., & Gzal, M. (2022). Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dynamics,108, 711–741. Vakakis, A. F., Gendelman, O. V., Bergman, L. A., Mojahed, A., & Gzal, M. (2022). Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dynamics,108, 711–741.
go back to reference Vakakis, A. F., Gendelman, O. V., Kerschen, G., Bergman, L. A., McFarland, D. M., & Lee, Y. S. (2008). Nonlinear targeted energy transfer in mechanical and structural systems, I and II. Springer. Vakakis, A. F., Gendelman, O. V., Kerschen, G., Bergman, L. A., McFarland, D. M., & Lee, Y. S. (2008). Nonlinear targeted energy transfer in mechanical and structural systems, I and II. Springer.
go back to reference Vorotnikov, K., & Starosvetsky, Y. (2015a) Bifurcation structure of the special class of nonstationary regimes emerging in the 2D inertially coupled, unit-cell model: Analytical study. Journal of Sound and Vibration,377, 226–242. Vorotnikov, K., & Starosvetsky, Y. (2015a) Bifurcation structure of the special class of nonstationary regimes emerging in the 2D inertially coupled, unit-cell model: Analytical study. Journal of Sound and Vibration,377, 226–242.
go back to reference Vorotnikov, K., & Starosvetsky, Y. (2015b). Nonlinear energy channeling in the 2D, locally resonant, unit cell model. Part I: High energy pulsations and routes to energy localization. Chaos, 25, 073106. Vorotnikov, K., & Starosvetsky, Y. (2015b). Nonlinear energy channeling in the 2D, locally resonant, unit cell model. Part I: High energy pulsations and routes to energy localization. Chaos, 25, 073106.
Metadata
Title
Beyond Common Simplifications: Strongly Nonlinear Transient Phenomena
Author
Oleg V. Gendelman
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56902-9_2

Premium Partners