Skip to main content
Top
Published in:
Cover of the book

2014 | OriginalPaper | Chapter

1. Beyond the Second Law: An Overview

Authors : Roderick C. Dewar, Charles H. Lineweaver, Robert K. Niven, Klaus Regenauer-Lieb

Published in: Beyond the Second Law

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Second Law of Thermodynamics governs the average direction of all non-equilibrium dissipative processes. However it tells us nothing about their actual rates, or the probability of fluctuations about the average behaviour. The last few decades have seen significant advances, both theoretical and applied, in understanding and predicting the behaviour of non-equilibrium systems beyond what the Second Law tells us. Novel theoretical perspectives include various extremal principles concerning entropy production or dissipation, the Fluctuation Theorem, and the Maximum Entropy formulation of non-equilibrium statistical mechanics. However, these new perspectives have largely been developed and applied independently, in isolation from each other. The key purpose of the present book is to bring together these different approaches and identify potential connections between them: specifically, to explore links between hitherto separate theoretical concepts, with entropy production playing a unifying role; and to close the gap between theory and applications. The aim of this overview chapter is to orient and guide the reader towards this end. We begin with a rapid flight over the fragmented landscape that lies beyond the Second Law. We then highlight the connections that emerge from the recent work presented in this volume. Finally we summarise these connections in a tentative road map that also highlights some directions for future research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Equilibrium is used here in the thermodynamic sense, and not in the dynamic sense of stationarity.
 
2
Strictly speaking, the Navier–Stokes equation is only approximate; the (linear) expression for the stress tensor is only valid close to equilibrium.
 
3
However, Paltridge’s energy balance model still contained a number of ad hoc assumptions and parameterizations (see Herbert and Paillard Chap.​ 9).
 
4
The ensemble average is over the probability distribution of microscopic trajectories in phase space (see Sect. 1.4.1).
 
5
Here L ij is the inverse of the matrix R ij in Table 1.1.
 
6
An equivalent orthogonality condition for the direction of the generalised fluxes J in force space can be stated in terms of the contours of σ(X).
 
7
The regime of linear force-flux relations.
 
8
In Paltridge’s zonally-averaged climate model [4], thermal dissipation is given by σ = Σi J i X i where J i = material heat transport between meridional zones i and i + 1, and X i = 1/T i+1−1/T i is the corresponding inverse temperature difference.
 
9
The notation is simplified here for clarity. In terms of the notation of Chap.​ 2, for example, p Γ = p(Γ(0), 0) is the probability of observing the system in an infinitesmal region around Γ(0) at time t = 0, where Γ(t) denotes the phase space vector at time t, and p Γ* = p(Γ*(τ), 0) where Γ*(τ) is obtained from Γ(τ) by reversing all the particle velocities.
 
10
If δ(i,j) denotes the Kronecker delta function [0 if i ≠ j, 1 if i = j], Eq. (1.2) follows from pΓ = A) = ΣΓ p Γδ(ΩΓ, A) = [change of variable] ΣΓ p Γ*δ(ΩΓ*, A) = (from Eq. 1.1) ΣΓ p Γexp(–ΩΓ)δ(–ΩΓ, A) = e A ΣΓ p Γδ(ΩΓ, –A) = e A pΓ = –A). Equation (1.3) follows from Gibbs’ inequality: –Σi p ilnp i ≤ –Σi p ilnq i for any probability distributions p i and q i, with equality if and only if p i = q i for all i.
 
11
In Chap.​ 3, MaxEnt is used to construct p(f), the probability distribution of macroscopic fluxes f, rather than p Γ; the formalism can be re-expressed in terms of p Γ as shown in [42].
 
12
Specifically (see Chap.​ 3), when the non-equilibrium driving force is such that \( \left\langle \Upomega \right\rangle^{\text{C}} > \left\langle \Upomega \right\rangle^{\text{C}}_{ \hbox{min} } , \) then MaxEnt implies \( \left\langle \Upomega \right\rangle = \left\langle \Upomega \right\rangle_{ \hbox{max} } \). Here C denotes a restricted set of stationarity constraints, the nature of which determines the physical nature of \( \left\langle \Upomega \right\rangle^{\text{C}} \) as an entropy production or dissipation functional; \( \left\langle \Upomega \right\rangle^{\text{C}}_{ \hbox{min} } \) and \( \left\langle \Upomega \right\rangle^{\text{C}}_{ \hbox{max} } \) are the lower and upper bounds on \( \left\langle \Upomega \right\rangle^{\text{C}} \).
 
13
In Chap.​ 8 and [28], only a spatially-averaged momentum balance constraint is imposed, rather than the full Navier–Stokes equation.
 
14
The restriction of the analysis in [43] to near-equilibrium systems was pointed out in [46, 47].
 
15
For an alternative perspective, see Chap.​ 5.
 
16
The minimum is along a path in the space of flux states.
 
Literature
1.
go back to reference Schrödinger, E.: What is life? (With mind and matter and autobiographical sketches). CUP, Cambridge (1992)CrossRef Schrödinger, E.: What is life? (With mind and matter and autobiographical sketches). CUP, Cambridge (1992)CrossRef
2.
go back to reference Maxwell, J.C.: Letter to John William Strutt (1870). In: PM Harman (ed) The scientific letters and papers of James Clerk Maxwell. CUP, Cambridge UK 2, 582–583 (1990) Maxwell, J.C.: Letter to John William Strutt (1870). In: PM Harman (ed) The scientific letters and papers of James Clerk Maxwell. CUP, Cambridge UK 2, 582–583 (1990)
3.
go back to reference Paltridge, G.W.: Global dynamics and climate-a system of minimum entropy exchange. Q. J. Roy. Meteorol. Soc. 101, 475–484 (1975)CrossRef Paltridge, G.W.: Global dynamics and climate-a system of minimum entropy exchange. Q. J. Roy. Meteorol. Soc. 101, 475–484 (1975)CrossRef
4.
go back to reference Paltridge, G.W.: The steady-state format of global climate. Q. J. Roy. Meteorol. Soc. 104, 927–945 (1978)CrossRef Paltridge, G.W.: The steady-state format of global climate. Q. J. Roy. Meteorol. Soc. 104, 927–945 (1978)CrossRef
5.
go back to reference Paltridge, G.W.: Thermodynamic dissipation and the global climate system. Q. J. Roy. Meteorol. Soc. 107, 531–547 (1981)CrossRef Paltridge, G.W.: Thermodynamic dissipation and the global climate system. Q. J. Roy. Meteorol. Soc. 107, 531–547 (1981)CrossRef
6.
go back to reference Lorenz, R.D., Lunine, J.I., Withers, P.G., McKay, C.P.: Titan, mars and earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415–418 (2001)CrossRef Lorenz, R.D., Lunine, J.I., Withers, P.G., McKay, C.P.: Titan, mars and earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415–418 (2001)CrossRef
7.
go back to reference Hill, A.: Entropy production as a selection rule between different growth morphologies. Nature 348, 426–428 (1990)CrossRef Hill, A.: Entropy production as a selection rule between different growth morphologies. Nature 348, 426–428 (1990)CrossRef
8.
go back to reference Martyushev, L.M., Serebrennikov, S.V.: Morphological stability of a crystal with respect to arbitrary boundary perturbation. Tech. Phys. Lett. 32, 614–617 (2006)CrossRef Martyushev, L.M., Serebrennikov, S.V.: Morphological stability of a crystal with respect to arbitrary boundary perturbation. Tech. Phys. Lett. 32, 614–617 (2006)CrossRef
9.
go back to reference Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. Comp. Biol. Chem. 27, 541–553 (2003)CrossRefMATH Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. Comp. Biol. Chem. 27, 541–553 (2003)CrossRefMATH
10.
go back to reference Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 430, 177–182 (2006)CrossRef Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 430, 177–182 (2006)CrossRef
11.
go back to reference Dewar, R.C.: Maximum entropy production and plant optimization theories. Phil. Trans. R. Soc. B 365, 1429–1435 (2010)CrossRef Dewar, R.C.: Maximum entropy production and plant optimization theories. Phil. Trans. R. Soc. B 365, 1429–1435 (2010)CrossRef
12.
go back to reference Franklin, O., Johansson J., Dewar, R.C. Dieckmann, U., McMurtrie, R.E., Brännström, Å, Dybzinski, R.: Modeling carbon allocation in trees: a search for principles. Tree Physiol. 32, 648--666 (2012) Franklin, O., Johansson J., Dewar, R.C. Dieckmann, U., McMurtrie, R.E., Brännström, Å, Dybzinski, R.: Modeling carbon allocation in trees: a search for principles. Tree Physiol. 32, 648--666 (2012)
13.
go back to reference Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)MathSciNetCrossRef Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)MathSciNetCrossRef
14.
go back to reference Evans, D.J., Searle, D.J.: The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2005)CrossRef Evans, D.J., Searle, D.J.: The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2005)CrossRef
15.
go back to reference Seifert, U.: Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423–431 (2008)CrossRefMATH Seifert, U.: Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423–431 (2008)CrossRefMATH
16.
go back to reference Sevick, E.M., Prabhakar, R., Williams, S.R., Searles, D.J.: Fluctuation theorems. Ann. Rev. Phys. Chem. 59, 603–633 (2008)CrossRef Sevick, E.M., Prabhakar, R., Williams, S.R., Searles, D.J.: Fluctuation theorems. Ann. Rev. Phys. Chem. 59, 603–633 (2008)CrossRef
17.
go back to reference Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931) Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)
18.
go back to reference Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)CrossRefMATH Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)CrossRefMATH
19.
go back to reference Prigogine, I.: Introduction to thermodynamics of irreversible processes. Wiley, New York (1967) Prigogine, I.: Introduction to thermodynamics of irreversible processes. Wiley, New York (1967)
20.
21.
22.
go back to reference Ziegler, H.: An Introduction to Thermomechanics. North-Holland, Amsterdam (1983)MATH Ziegler, H.: An Introduction to Thermomechanics. North-Holland, Amsterdam (1983)MATH
26.
go back to reference Kerswell, R.R.: Upper bounds on general dissipation functionals in turbulent shear flows: revisiting the ‘efficiency’ functional. J. Fluid Mech. 461, 239–275 (2002)MathSciNetCrossRefMATH Kerswell, R.R.: Upper bounds on general dissipation functionals in turbulent shear flows: revisiting the ‘efficiency’ functional. J. Fluid Mech. 461, 239–275 (2002)MathSciNetCrossRefMATH
27.
go back to reference Ozawa, H., Shimokawa, S., Sakuma, H.: Thermodynamics of fluid turbulence: a unified approach to the maximum transport properties. Phys. Rev. E 64, 026303 (2001)CrossRef Ozawa, H., Shimokawa, S., Sakuma, H.: Thermodynamics of fluid turbulence: a unified approach to the maximum transport properties. Phys. Rev. E 64, 026303 (2001)CrossRef
29.
go back to reference Pascale, S., Gregory, J.M., Ambaum, M.H.P., Tailleux, R.: A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim. Dyn. 38, 1211–1227 (2012)CrossRef Pascale, S., Gregory, J.M., Ambaum, M.H.P., Tailleux, R.: A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim. Dyn. 38, 1211–1227 (2012)CrossRef
30.
go back to reference Boltzmann, L.: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Wien. Ber. 76, 373–435 (1877) Boltzmann, L.: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Wien. Ber. 76, 373–435 (1877)
31.
go back to reference Gibbs, J.W.: Elementary principles of statistical mechanics. Ox Bow Press, Woodridge (1981). Reprinted Gibbs, J.W.: Elementary principles of statistical mechanics. Ox Bow Press, Woodridge (1981). Reprinted
34.
go back to reference Jaynes, E.T.: Probability Theory: The Logic of Science. In: Bretthorst, G.L. (ed.). CUP, Cambridge (2003) Jaynes, E.T.: Probability Theory: The Logic of Science. In: Bretthorst, G.L. (ed.). CUP, Cambridge (2003)
35.
go back to reference Houlsby, G.T., Puzrin, A.M.: Principles of hyperplasticity. Springer, London (2006) Houlsby, G.T., Puzrin, A.M.: Principles of hyperplasticity. Springer, London (2006)
36.
go back to reference Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423 and 623–656 (1948) Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423 and 623–656 (1948)
37.
go back to reference Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Urbana (1949)MATH Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Urbana (1949)MATH
38.
go back to reference Grandy, W.T. Jr.: Foundations of Statistical Mechanics. Volume II: Nonequilibrium Phenomena. D. Reidel, Dordrecht (1987) Grandy, W.T. Jr.: Foundations of Statistical Mechanics. Volume II: Nonequilibrium Phenomena. D. Reidel, Dordrecht (1987)
39.
go back to reference Grandy, W.T. Jr.: Entropy and the time evolution of macroscopic systems. International series of monographs on physics, vol. 141, Oxford University Press, Oxford (2008) Grandy, W.T. Jr.: Entropy and the time evolution of macroscopic systems. International series of monographs on physics, vol. 141, Oxford University Press, Oxford (2008)
40.
go back to reference Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113 (2009)CrossRef Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113 (2009)CrossRef
41.
go back to reference Dewar, R.C.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: Don’t shoot the messenger. Entropy 11, 931–944 (2009)CrossRef Dewar, R.C.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: Don’t shoot the messenger. Entropy 11, 931–944 (2009)CrossRef
42.
go back to reference Dewar, R.C.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631–641 (2003)MathSciNetCrossRefMATH Dewar, R.C.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631–641 (2003)MathSciNetCrossRefMATH
44.
go back to reference Jaynes, E.T.: The minimum entropy production principle. Ann. Rev. Phys. Chem. 31, 579–601 (1980)CrossRef Jaynes, E.T.: The minimum entropy production principle. Ann. Rev. Phys. Chem. 31, 579–601 (1980)CrossRef
45.
go back to reference Jupp, T.E., Cox, P.M.: MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics. Phil. Trans. R. Soc. B. 365, 1355–1365 (2010)CrossRef Jupp, T.E., Cox, P.M.: MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics. Phil. Trans. R. Soc. B. 365, 1355–1365 (2010)CrossRef
46.
47.
go back to reference Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A: Math. Theor. 40, 9717–9720 (2007)MathSciNetCrossRefMATH Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A: Math. Theor. 40, 9717–9720 (2007)MathSciNetCrossRefMATH
48.
go back to reference Agmon, N., Alhassid, Y., Levine, R.D.: An algorithm for finding the distribution of maximal entropy. J. Comput. Phys. 30, 250–258 (1979)CrossRefMATH Agmon, N., Alhassid, Y., Levine, R.D.: An algorithm for finding the distribution of maximal entropy. J. Comput. Phys. 30, 250–258 (1979)CrossRefMATH
49.
50.
go back to reference Herbert, C., Paillard, D., Dubrulle, B.: Entropy production and multiple equilibria: the case of the ice-albedo feedback. Earth Syst. Dynam. 2, 13–23 (2011)CrossRef Herbert, C., Paillard, D., Dubrulle, B.: Entropy production and multiple equilibria: the case of the ice-albedo feedback. Earth Syst. Dynam. 2, 13–23 (2011)CrossRef
51.
go back to reference Thomas, T.Y.: Qualitative analysis of the flow of fluids in pipes. Am. J. Math. 64, 754–767 (1942)CrossRefMATH Thomas, T.Y.: Qualitative analysis of the flow of fluids in pipes. Am. J. Math. 64, 754–767 (1942)CrossRefMATH
52.
go back to reference Paulus, D.M., Gaggioli, R.A.: Some observations of entropy extrema in fluid flow. Energy 29, 2487–2500 (2004)CrossRef Paulus, D.M., Gaggioli, R.A.: Some observations of entropy extrema in fluid flow. Energy 29, 2487–2500 (2004)CrossRef
53.
go back to reference Martyushev, L.M.: Some interesting consequences of the maximum entropy production principle. J. Exper. Theor. Phys. 104, 651–654 (2007)CrossRef Martyushev, L.M.: Some interesting consequences of the maximum entropy production principle. J. Exper. Theor. Phys. 104, 651–654 (2007)CrossRef
54.
go back to reference Niven, R.K.: Simultaneous extrema in the entropy production for steady-state fluid flow in parallel pipes. J. Non-Equil. Thermodyn. 35, 347–378 (2010)CrossRefMATH Niven, R.K.: Simultaneous extrema in the entropy production for steady-state fluid flow in parallel pipes. J. Non-Equil. Thermodyn. 35, 347–378 (2010)CrossRefMATH
Metadata
Title
Beyond the Second Law: An Overview
Authors
Roderick C. Dewar
Charles H. Lineweaver
Robert K. Niven
Klaus Regenauer-Lieb
Copyright Year
2014
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-40154-1_1