Skip to main content
Top
Published in:

19-03-2023 | Original Paper

Bi-level shared energy storage station capacity configuration method for multi-energy hubs considering health state of battery

Authors: Lifei Ma, Jizhen Liu, Qinghua Wang

Published in: Electrical Engineering | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the development of energy storage (ES) technology and sharing economy, the integration of shared energy storage (SES) station in multiple electric-thermal hybrid energy hubs (EHs) has provided potential benefit to end users and system operators. However, the state of health (SOH) and life characteristics of ES batteries have not been accurately and comprehensively considered in the capacity configuration and operation of SES station. This paper presents a bi-level SES station capacity configuration method for multi-EHs considering SOH of ES battery. Firstly, incorporating degradation costs of the ES battery with respect to the depth of discharge, SOH and lifetime, SOH and degradation cost in different stages of life cycle are modeled and transformed to segmented degradation cost model. Secondly, a bi-level capacity configuration model considering two different time scales is established. The upper layer model solves the optimal capacity configuration problem of the SES station in a long time scale. The lower layer model solves the optimization operation problem of the multi-EHs in a short time scale. Finally, the results of configuration simulation and financial analysis show that the proposed method can accurately reflect the SOH and economic operation status of SES station in each stage of its life cycle, effectively reduce the cost of EHs and realize the mutual benefit between the customers and the SES station operator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Dai R, Esmaeilbeigi R, Charkhgard H (2021) The utilization of shared energy storage in energy systems: a comprehensive review. IEEE Trans Smart Grid 12(4):3163–3174CrossRef Dai R, Esmaeilbeigi R, Charkhgard H (2021) The utilization of shared energy storage in energy systems: a comprehensive review. IEEE Trans Smart Grid 12(4):3163–3174CrossRef
2.
go back to reference Liu J, Chen X, Xiang Y et al (2021) Optimal planning and investment benefit analysis of shared energy storage for electricity retailers. Int J Electr Power Energy Syst 126(6):106561CrossRef Liu J, Chen X, Xiang Y et al (2021) Optimal planning and investment benefit analysis of shared energy storage for electricity retailers. Int J Electr Power Energy Syst 126(6):106561CrossRef
3.
go back to reference Awnalisa W, Soongeol K (2021) Analysis on impact of shared energy storage in residential community: Individual versus shared energy storage. Appl Energy 282:116172CrossRef Awnalisa W, Soongeol K (2021) Analysis on impact of shared energy storage in residential community: Individual versus shared energy storage. Appl Energy 282:116172CrossRef
4.
go back to reference Zhang W, Wei W, Chen L et al (2020) Service pricing and load dispatch of residential shared energy storage unit. Energy 202:117543CrossRef Zhang W, Wei W, Chen L et al (2020) Service pricing and load dispatch of residential shared energy storage unit. Energy 202:117543CrossRef
5.
go back to reference Jo J, Park J (2020) Demand-side management with shared energy storage system in smart grid. IEEE Trans Smart Grid 11(5):4466–4476CrossRef Jo J, Park J (2020) Demand-side management with shared energy storage system in smart grid. IEEE Trans Smart Grid 11(5):4466–4476CrossRef
6.
go back to reference Mediwaththe C, Shaw M, Halgamuge S et al (2019) An incentive-compatible energy trading framework for neighborhood area networks with shared energy storage. IEEE Trans Sustain Energy 11(1):467–476CrossRef Mediwaththe C, Shaw M, Halgamuge S et al (2019) An incentive-compatible energy trading framework for neighborhood area networks with shared energy storage. IEEE Trans Sustain Energy 11(1):467–476CrossRef
7.
go back to reference Yang Y, Hu G, Spanos CJ (2021) Optimal sharing and fair cost allocation of community energy storage. IEEE Trans Smart Grid 12(5):4185–4194CrossRef Yang Y, Hu G, Spanos CJ (2021) Optimal sharing and fair cost allocation of community energy storage. IEEE Trans Smart Grid 12(5):4185–4194CrossRef
8.
go back to reference Said M, Alpaslan D, Erdin G et al (2022) Maximizing self-consumption rates and power quality towards two-stage evaluation for solar energy and shared energy storage empowered microgrids. J f Energy Storage 51:104561CrossRef Said M, Alpaslan D, Erdin G et al (2022) Maximizing self-consumption rates and power quality towards two-stage evaluation for solar energy and shared energy storage empowered microgrids. J f Energy Storage 51:104561CrossRef
9.
go back to reference Li R, Cao X, Zhang S et al (2021) Shared energy storage system for prosumers in a community: Investment decision, economic operation, and benefits allocation under a cost-effective way. J Energy Storage 50:104710CrossRef Li R, Cao X, Zhang S et al (2021) Shared energy storage system for prosumers in a community: Investment decision, economic operation, and benefits allocation under a cost-effective way. J Energy Storage 50:104710CrossRef
10.
go back to reference Xiao J, Yang Y, Cui S et al (2022) A new energy storage sharing framework with regard To both storage capacity and power capacity. Appl Energy 307:118171CrossRef Xiao J, Yang Y, Cui S et al (2022) A new energy storage sharing framework with regard To both storage capacity and power capacity. Appl Energy 307:118171CrossRef
11.
go back to reference Zhang X, Wang Z, Liao H et al (2022) Optimal capacity planning and operation of shared energy storage system for large-scale photovoltaic integrated 5G base stations. Int J Electr Power Energy Syst 147:108816CrossRef Zhang X, Wang Z, Liao H et al (2022) Optimal capacity planning and operation of shared energy storage system for large-scale photovoltaic integrated 5G base stations. Int J Electr Power Energy Syst 147:108816CrossRef
12.
go back to reference Li S, Fang Z, Li F et al (2022) Game-based optimal dispatching strategy for distribution network with multiple microgrids leasing shared energy storage. In: Proceedings of the CSEE Li S, Fang Z, Li F et al (2022) Game-based optimal dispatching strategy for distribution network with multiple microgrids leasing shared energy storage. In: Proceedings of the CSEE
13.
go back to reference Ye Z, Wang Y, Han K et al (2023) Bi-objective optimization and emergy analysis of multi-distributed energy system considering shared energy storage. Sustainability 15(2):1011CrossRef Ye Z, Wang Y, Han K et al (2023) Bi-objective optimization and emergy analysis of multi-distributed energy system considering shared energy storage. Sustainability 15(2):1011CrossRef
14.
go back to reference Awnalisa W, Soongeol K (2021) Design of structured control policy for shared energy storage in residential community: a stochastic optimization approach. Appl Energy 298:117182CrossRef Awnalisa W, Soongeol K (2021) Design of structured control policy for shared energy storage in residential community: a stochastic optimization approach. Appl Energy 298:117182CrossRef
15.
go back to reference Dai R, Charkhgard H, Rigterink F (2020) A robust biobjective optimization approach for operating a shared energy storage under price uncertainty. Int Trans Oper Res 29(3):1627–1658MathSciNetCrossRef Dai R, Charkhgard H, Rigterink F (2020) A robust biobjective optimization approach for operating a shared energy storage under price uncertainty. Int Trans Oper Res 29(3):1627–1658MathSciNetCrossRef
16.
go back to reference Taşcıkaraoğlu A, Paterakis NG, Erdinç O et al (2019) Combining the flexibility from shared energy storage systems and DLC-based demand response of HVAC units for distribution system operation enhancement. IEEE Trans Sustain Energy 10(1):137–148CrossRef Taşcıkaraoğlu A, Paterakis NG, Erdinç O et al (2019) Combining the flexibility from shared energy storage systems and DLC-based demand response of HVAC units for distribution system operation enhancement. IEEE Trans Sustain Energy 10(1):137–148CrossRef
17.
go back to reference Woody M (2020) Strategies to limit degradation and maximize Li-ion battery service lifetime-critical review and guidance for stakeholders. J Energy Storage 28:101231CrossRef Woody M (2020) Strategies to limit degradation and maximize Li-ion battery service lifetime-critical review and guidance for stakeholders. J Energy Storage 28:101231CrossRef
19.
go back to reference Yi T, Ye H, Li Q et al (2022) Energy storage capacity optimization of wind-energy storage hybrid power plant based on dynamic control strategy. J Energy Storage 55:105372CrossRef Yi T, Ye H, Li Q et al (2022) Energy storage capacity optimization of wind-energy storage hybrid power plant based on dynamic control strategy. J Energy Storage 55:105372CrossRef
20.
go back to reference Zhao X, Shen X, Guo Q et al (2020) A stochastic distribution system planning method considering regulation services and energy storage degradation. Appl Energy 277:115520CrossRef Zhao X, Shen X, Guo Q et al (2020) A stochastic distribution system planning method considering regulation services and energy storage degradation. Appl Energy 277:115520CrossRef
21.
go back to reference Li Y, Vilathgamuwa M, Choi SS et al (2020) Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability. Appl Energy 260:114282CrossRef Li Y, Vilathgamuwa M, Choi SS et al (2020) Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability. Appl Energy 260:114282CrossRef
22.
go back to reference Maheshwari A, Paterakis NG, Santarelli M et al (2020) Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model. Appl Energy 261:114360CrossRef Maheshwari A, Paterakis NG, Santarelli M et al (2020) Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model. Appl Energy 261:114360CrossRef
23.
go back to reference Avula RR, Chin JX, Oechtering TJ et al (2021) Design framework for privacy-aware demand-side management with realistic energy storage model. IEEE Trans Smart Grid 12(4):3503–3513CrossRef Avula RR, Chin JX, Oechtering TJ et al (2021) Design framework for privacy-aware demand-side management with realistic energy storage model. IEEE Trans Smart Grid 12(4):3503–3513CrossRef
24.
go back to reference Fang S, Wang H, Zhang S et al (2020) Optimal management of shipboard energy storage system considering battery lifetime degradation. Proc CSEE 40(23):7566–7578 Fang S, Wang H, Zhang S et al (2020) Optimal management of shipboard energy storage system considering battery lifetime degradation. Proc CSEE 40(23):7566–7578
25.
go back to reference Shi Y, Xu B, Wang D et al (2017) Using battery storage for peak shaving and frequency regulation: joint optimization for superlinear gains. IEEE Trans Power Syst 33:2882–2894CrossRef Shi Y, Xu B, Wang D et al (2017) Using battery storage for peak shaving and frequency regulation: joint optimization for superlinear gains. IEEE Trans Power Syst 33:2882–2894CrossRef
26.
go back to reference Drouilhet S, Johnson B (1997) A battery life prediction method for hybrid power applications. AIAA aerospace sciences meeting and exhibit Drouilhet S, Johnson B (1997) A battery life prediction method for hybrid power applications. AIAA aerospace sciences meeting and exhibit
28.
go back to reference Wu S, Li Q, Liu J et al (2021) Bi-level optimal configuration for combined cooling heating and power multi-microgrids based on energy storage station service. Power Syst Technol 10(45):3822–3829 Wu S, Li Q, Liu J et al (2021) Bi-level optimal configuration for combined cooling heating and power multi-microgrids based on energy storage station service. Power Syst Technol 10(45):3822–3829
Metadata
Title
Bi-level shared energy storage station capacity configuration method for multi-energy hubs considering health state of battery
Authors
Lifei Ma
Jizhen Liu
Qinghua Wang
Publication date
19-03-2023
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 4/2023
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01791-w

Other articles of this Issue 4/2023

Electrical Engineering 4/2023 Go to the issue