Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

02-02-2023 | Original Article

Bi-STAN: bilinear spatial-temporal attention network for wearable human activity recognition

Authors: Chenlong Gao, Yiqiang Chen, Xinlong Jiang, Lisha Hu, Zhicheng Zhao, Yuxin Zhang

Published in: International Journal of Machine Learning and Cybernetics

Login to get access
share
SHARE

Abstract

With the progressive development of ubiquitous computing, wearable human activity recognition is playing an increasingly important role in many fields, such as health monitoring, disease-assisted diagnostic rehabilitation, and exercise assessment. Internal measurement unit in wearable devices provides a rich representation of motion. Human activity recognition based on sensor sequence has proven to be crucial in machine learning research. The key challenge is to extract powerful representational features from multi-sensor data to capture subtle differences in human activities. Beyond this challenge, due to the lack of attention to the temporal and spatial dependence of the data, critical information is often lost in the feature extraction process. Few previous papers can jointly address these two challenges. In this paper, we propose an efficient Bilinear Spatial-Temporal Attention Network (Bi-STAN). Firstly, a multi-scale ResNet backbone network is used to extract multimodal signal features and jointly optimize the feature extraction process. Then, to adaptively focus on what and where is important in the original data and to mine the discriminative part of the features, we design a spatial-temporal attention network. Finally, a bilinear pooling with low redundancy is introduced to efficiently obtain second-order information. Experiments on three public datasets and our real-world dataset demonstrate that the proposed Bi-STAN is superior to existing methods in terms of both accuracy and efficiency. The code and models are publicly available at https://​github.​com/​ilovesea/​Bi-STAN.​

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Show more products
Literature
1.
go back to reference Bulling A, Blanke U, Schiele B (2014) A tutorial on human activity recognition using body-worn inertial sensors. ACM Computing Surveys (CSUR) 46(3):1–33 CrossRef Bulling A, Blanke U, Schiele B (2014) A tutorial on human activity recognition using body-worn inertial sensors. ACM Computing Surveys (CSUR) 46(3):1–33 CrossRef
2.
go back to reference Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsl 12(2):74–82 CrossRef Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. ACM SIGKDD Explorations Newsl 12(2):74–82 CrossRef
3.
go back to reference Huỳnh, T., Blanke, U., Schiele, B.: Scalable recognition of daily activities with wearable sensors. In: International Symposium on Location-and Context-Awareness, pp. 50–67 (2007). Springer Huỳnh, T., Blanke, U., Schiele, B.: Scalable recognition of daily activities with wearable sensors. In: International Symposium on Location-and Context-Awareness, pp. 50–67 (2007). Springer
4.
go back to reference Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: International Conference on Pervasive Computing, pp. 1–17 (2004). Springer Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: International Conference on Pervasive Computing, pp. 1–17 (2004). Springer
5.
go back to reference Feng, Z., Mo, L., Li, M.: A random forest-based ensemble method for activity recognition. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5074–5077 (2015). IEEE Feng, Z., Mo, L., Li, M.: A random forest-based ensemble method for activity recognition. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5074–5077 (2015). IEEE
6.
go back to reference Subasi A, Dammas DH, Alghamdi RD, Makawi RA, Albiety EA, Brahimi T, Sarirete A (2018) Sensor based human activity recognition using adaboost ensemble classifier. Procedia Computer Science 140:104–111 CrossRef Subasi A, Dammas DH, Alghamdi RD, Makawi RA, Albiety EA, Brahimi T, Sarirete A (2018) Sensor based human activity recognition using adaboost ensemble classifier. Procedia Computer Science 140:104–111 CrossRef
7.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
8.
go back to reference Ferrari, A., Micucci, D., Mobilio, M., Napoletano, P.: Human activities recognition using accelerometer and gyroscope. In: European Conference on Ambient Intelligence, pp. 357–362 (2019). Springer Ferrari, A., Micucci, D., Mobilio, M., Napoletano, P.: Human activities recognition using accelerometer and gyroscope. In: European Conference on Ambient Intelligence, pp. 357–362 (2019). Springer
9.
go back to reference Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. arXiv preprint arXiv:​1706.​03762 (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. arXiv preprint arXiv:​1706.​03762 (2017)
10.
go back to reference Lin, T.-Y., RoyChowdhury, A., Maji, S.: Bilinear cnn models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1457 (2015) Lin, T.-Y., RoyChowdhury, A., Maji, S.: Bilinear cnn models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)
11.
go back to reference Yang, J., Nguyen, M.N., San, P.P., Li, X.L., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: Twenty-fourth International Joint Conference on Artificial Intelligence (2015) Yang, J., Nguyen, M.N., San, P.P., Li, X.L., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: Twenty-fourth International Joint Conference on Artificial Intelligence (2015)
12.
go back to reference Guan Y, Plötz T (2017) Ensembles of deep lstm learners for activity recognition using wearables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1(2):1–28 CrossRef Guan Y, Plötz T (2017) Ensembles of deep lstm learners for activity recognition using wearables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1(2):1–28 CrossRef
13.
go back to reference Wang, T., Ng, W.W., Li, J., Wu, Q., Zhang, S., Nugent, C., Shewell, C.: A deep clustering via automatic feature embedded learning for human activity recognition. IEEE Transactions on Circuits and Systems for Video Technology (2021) Wang, T., Ng, W.W., Li, J., Wu, Q., Zhang, S., Nugent, C., Shewell, C.: A deep clustering via automatic feature embedded learning for human activity recognition. IEEE Transactions on Circuits and Systems for Video Technology (2021)
14.
go back to reference Gu F, Chung M-H, Chignell M, Valaee S, Zhou B, Liu X (2021) A survey on deep learning for human activity recognition. ACM Computing Surveys (CSUR) 54(8):1–34 CrossRef Gu F, Chung M-H, Chignell M, Valaee S, Zhou B, Liu X (2021) A survey on deep learning for human activity recognition. ACM Computing Surveys (CSUR) 54(8):1–34 CrossRef
15.
go back to reference Andrade-Ambriz YA, Ledesma S, Ibarra-Manzano M-A, Oros-Flores MI, Almanza-Ojeda D-L (2022) Human activity recognition using temporal convolutional neural network architecture. Expert Systems with Applications 191:116287 Andrade-Ambriz YA, Ledesma S, Ibarra-Manzano M-A, Oros-Flores MI, Almanza-Ojeda D-L (2022) Human activity recognition using temporal convolutional neural network architecture. Expert Systems with Applications 191:116287
16.
go back to reference Zeng, M., Nguyen, L.T., Yu, B., Mengshoel, O.J., Zhu, J., Wu, P., Zhang, J.: Convolutional neural networks for human activity recognition using mobile sensors. In: 6th International Conference on Mobile Computing, Applications and Services, pp. 197–205 (2014). IEEE Zeng, M., Nguyen, L.T., Yu, B., Mengshoel, O.J., Zhu, J., Wu, P., Zhang, J.: Convolutional neural networks for human activity recognition using mobile sensors. In: 6th International Conference on Mobile Computing, Applications and Services, pp. 197–205 (2014). IEEE
17.
go back to reference Chen, Y., Xue, Y.: A deep learning approach to human activity recognition based on single accelerometer. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1488–1492 (2015). IEEE Chen, Y., Xue, Y.: A deep learning approach to human activity recognition based on single accelerometer. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1488–1492 (2015). IEEE
18.
go back to reference Altun K, Barshan B, Tunçel O (2010) Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn 43(10):3605–3620 CrossRefMATH Altun K, Barshan B, Tunçel O (2010) Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn 43(10):3605–3620 CrossRefMATH
19.
go back to reference Münzner, S., Schmidt, P., Reiss, A., Hanselmann, M., Stiefelhagen, R., Dürichen, R.: Cnn-based sensor fusion techniques for multimodal human activity recognition. In: Proceedings of the 2017 ACM International Symposium on Wearable Computers, pp. 158–165 (2017) Münzner, S., Schmidt, P., Reiss, A., Hanselmann, M., Stiefelhagen, R., Dürichen, R.: Cnn-based sensor fusion techniques for multimodal human activity recognition. In: Proceedings of the 2017 ACM International Symposium on Wearable Computers, pp. 158–165 (2017)
20.
go back to reference Ma, H., Li, W., Zhang, X., Gao, S., Lu, S.: Attnsense: Multi-level attention mechanism for multimodal human activity recognition. In: IJCAI, pp. 3109–3115 (2019) Ma, H., Li, W., Zhang, X., Gao, S., Lu, S.: Attnsense: Multi-level attention mechanism for multimodal human activity recognition. In: IJCAI, pp. 3109–3115 (2019)
21.
go back to reference Lv, X., Yu, C., Jin, H., Zhang, R.: Cost efficient sensor positions determination for human activity recognition. IEEE Transactions on Sustainable Computing (2021) Lv, X., Yu, C., Jin, H., Zhang, R.: Cost efficient sensor positions determination for human activity recognition. IEEE Transactions on Sustainable Computing (2021)
22.
go back to reference Rashid, N., Demirel, B.U., Al Faruque, M.A.: Ahar: Adaptive cnn for energy-efficient human activity recognition in low-power edge devices. IEEE Internet of Things Journal (2022) Rashid, N., Demirel, B.U., Al Faruque, M.A.: Ahar: Adaptive cnn for energy-efficient human activity recognition in low-power edge devices. IEEE Internet of Things Journal (2022)
23.
go back to reference Sena J, Barreto J, Caetano C, Cramer G, Schwartz WR (2021) Human activity recognition based on smartphone and wearable sensors using multiscale dcnn ensemble. Neurocomputing 444:226–243 CrossRef Sena J, Barreto J, Caetano C, Cramer G, Schwartz WR (2021) Human activity recognition based on smartphone and wearable sensors using multiscale dcnn ensemble. Neurocomputing 444:226–243 CrossRef
24.
go back to reference Yang, B., Tu, Z., Wong, D.F., Meng, F., Chao, L.S., Zhang, T.: Modeling localness for self-attention networks. arXiv preprint arXiv:​1810.​10182 (2018) Yang, B., Tu, Z., Wong, D.F., Meng, F., Chao, L.S., Zhang, T.: Modeling localness for self-attention networks. arXiv preprint arXiv:​1810.​10182 (2018)
25.
go back to reference Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017) Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)
26.
go back to reference Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019) Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)
27.
go back to reference Zeng, M., Gao, H., Yu, T., Mengshoel, O.J., Langseth, H., Lane, I., Liu, X.: Understanding and improving recurrent networks for human activity recognition by continuous attention. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 56–63 (2018) Zeng, M., Gao, H., Yu, T., Mengshoel, O.J., Langseth, H., Lane, I., Liu, X.: Understanding and improving recurrent networks for human activity recognition by continuous attention. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 56–63 (2018)
28.
go back to reference Murahari, V.S., Plötz, T.: On attention models for human activity recognition. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 100–103 (2018) Murahari, V.S., Plötz, T.: On attention models for human activity recognition. In: Proceedings of the 2018 ACM International Symposium on Wearable Computers, pp. 100–103 (2018)
29.
go back to reference Mahmud, S., Tonmoy, M., Bhaumik, K.K., Rahman, A., Amin, M.A., Shoyaib, M., Khan, M.A.H., Ali, A.A.: Human activity recognition from wearable sensor data using self-attention. arXiv preprint arXiv:​2003.​09018 (2020) Mahmud, S., Tonmoy, M., Bhaumik, K.K., Rahman, A., Amin, M.A., Shoyaib, M., Khan, M.A.H., Ali, A.A.: Human activity recognition from wearable sensor data using self-attention. arXiv preprint arXiv:​2003.​09018 (2020)
30.
go back to reference Zhong, Z., Lin, C., Ogata, T., Ota, J.: Multi-attention deep recurrent neural network for nursing action evaluation using wearable sensor. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 546–550 (2020) Zhong, Z., Lin, C., Ogata, T., Ota, J.: Multi-attention deep recurrent neural network for nursing action evaluation using wearable sensor. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 546–550 (2020)
31.
go back to reference Gao, W., Zhang, L., Teng, Q., He, J., Wu, H.: Danhar: dual attention network for multimodal human activity recognition using wearable sensors. Applied Soft Computing, 107728 (2021) Gao, W., Zhang, L., Teng, Q., He, J., Wu, H.: Danhar: dual attention network for multimodal human activity recognition using wearable sensors. Applied Soft Computing, 107728 (2021)
32.
go back to reference Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018) Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
33.
go back to reference Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018) Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)
34.
go back to reference Abdel-Basset, M., Hawash, H., Chang, V., Chakrabortty, R.K., Ryan, M.: Deep learning for heterogeneous human activity recognition in complex iot applications. IEEE Internet of Things Journal (2020) Abdel-Basset, M., Hawash, H., Chang, V., Chakrabortty, R.K., Ryan, M.: Deep learning for heterogeneous human activity recognition in complex iot applications. IEEE Internet of Things Journal (2020)
35.
go back to reference Khan ZN, Ahmad J (2021) Attention induced multi-head convolutional neural network for human activity recognition. Applied Soft Computing 110:107671 Khan ZN, Ahmad J (2021) Attention induced multi-head convolutional neural network for human activity recognition. Applied Soft Computing 110:107671
36.
go back to reference Tang, Y., Zhang, L., Teng, Q., Min, F., Song, A.: Triple cross-domain attention on human activity recognition using wearable sensors. IEEE Transactions on Emerging Topics in Computational Intelligence (2022) Tang, Y., Zhang, L., Teng, Q., Min, F., Song, A.: Triple cross-domain attention on human activity recognition using wearable sensors. IEEE Transactions on Emerging Topics in Computational Intelligence (2022)
37.
go back to reference Matsubara T, Morimoto J (2013) Bilinear modeling of emg signals to extract user-independent features for multiuser myoelectric interface. IEEE Trans Biomed Eng 60(8):2205–2213 CrossRef Matsubara T, Morimoto J (2013) Bilinear modeling of emg signals to extract user-independent features for multiuser myoelectric interface. IEEE Trans Biomed Eng 60(8):2205–2213 CrossRef
38.
go back to reference Carreira, J., Caseiro, R., Batista, J., Sminchisescu, C.: Semantic segmentation with second-order pooling. In: European Conference on Computer Vision, pp. 430–443 (2012). Springer Carreira, J., Caseiro, R., Batista, J., Sminchisescu, C.: Semantic segmentation with second-order pooling. In: European Conference on Computer Vision, pp. 430–443 (2012). Springer
39.
go back to reference Hu, J.-F., Zheng, W.-S., Pan, J., Lai, J., Zhang, J.: Deep bilinear learning for rgb-d action recognition. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 335–351 (2018) Hu, J.-F., Zheng, W.-S., Pan, J., Lai, J., Zhang, J.: Deep bilinear learning for rgb-d action recognition. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 335–351 (2018)
40.
go back to reference Gao, Y., Beijbom, O., Zhang, N., Darrell, T.: Compact bilinear pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 317–326 (2016) Gao, Y., Beijbom, O., Zhang, N., Darrell, T.: Compact bilinear pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 317–326 (2016)
41.
go back to reference Kar, P., Karnick, H.: Random feature maps for dot product kernels. In: Artificial Intelligence and Statistics, pp. 583–591 (2012). PMLR Kar, P., Karnick, H.: Random feature maps for dot product kernels. In: Artificial Intelligence and Statistics, pp. 583–591 (2012). PMLR
42.
go back to reference Pham, N., Pagh, R.: Fast and scalable polynomial kernels via explicit feature maps. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 239–247 (2013) Pham, N., Pagh, R.: Fast and scalable polynomial kernels via explicit feature maps. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 239–247 (2013)
43.
go back to reference Li, Y., Wang, N., Liu, J., Hou, X.: Factorized bilinear models for image recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2079–2087 (2017) Li, Y., Wang, N., Liu, J., Hou, X.: Factorized bilinear models for image recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2079–2087 (2017)
44.
go back to reference Ben-Younes, H., Cadene, R., Thome, N., Cord, M.: Block: Bilinear superdiagonal fusion for visual question answering and visual relationship detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8102–8109 (2019) Ben-Younes, H., Cadene, R., Thome, N., Cord, M.: Block: Bilinear superdiagonal fusion for visual question answering and visual relationship detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8102–8109 (2019)
45.
go back to reference Cai, S., Zuo, W., Zhang, L.: Higher-order integration of hierarchical convolutional activations for fine-grained visual categorization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 511–520 (2017) Cai, S., Zuo, W., Zhang, L.: Higher-order integration of hierarchical convolutional activations for fine-grained visual categorization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 511–520 (2017)
46.
go back to reference Wei, X., Zhang, Y., Gong, Y., Zhang, J., Zheng, N.: Grassmann pooling as compact homogeneous bilinear pooling for fine-grained visual classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 355–370 (2018) Wei, X., Zhang, Y., Gong, Y., Zhang, J., Zheng, N.: Grassmann pooling as compact homogeneous bilinear pooling for fine-grained visual classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 355–370 (2018)
47.
go back to reference Zheng, H., Fu, J., Zha, Z.-J., Luo, J.: Learning deep bilinear transformation for fine-grained image representation. arXiv preprint arXiv:​1911.​03621 (2019) Zheng, H., Fu, J., Zha, Z.-J., Luo, J.: Learning deep bilinear transformation for fine-grained image representation. arXiv preprint arXiv:​1911.​03621 (2019)
48.
go back to reference Min S, Yao H, Xie H, Zha Z-J, Zhang Y (2020) Multi-objective matrix normalization for fine-grained visual recognition. IEEE Trans Image Process 29:4996–5009 CrossRefMATH Min S, Yao H, Xie H, Zha Z-J, Zhang Y (2020) Multi-objective matrix normalization for fine-grained visual recognition. IEEE Trans Image Process 29:4996–5009 CrossRefMATH
49.
go back to reference Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 472–480 (2017) Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 472–480 (2017)
50.
go back to reference Gao, Z., Wu, Y., Zhang, X., Dai, J., Jia, Y., Harandi, M.: Revisiting bilinear pooling: A coding perspective. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3954–3961 (2020) Gao, Z., Wu, Y., Zhang, X., Dai, J., Jia, Y., Harandi, M.: Revisiting bilinear pooling: A coding perspective. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3954–3961 (2020)
51.
go back to reference Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster, G., Lukowicz, P., Bannach, D., Pirkl, G., Ferscha, A., et al.: Collecting complex activity datasets in highly rich networked sensor environments. In: 2010 Seventh International Conference on Networked Sensing Systems (INSS), pp. 233–240 (2010). IEEE Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster, G., Lukowicz, P., Bannach, D., Pirkl, G., Ferscha, A., et al.: Collecting complex activity datasets in highly rich networked sensor environments. In: 2010 Seventh International Conference on Networked Sensing Systems (INSS), pp. 233–240 (2010). IEEE
52.
go back to reference Sucerquia A, López JD, Vargas-Bonilla JF (2017) Sisfall: A fall and movement dataset. Sensors 17(1):198 CrossRef Sucerquia A, López JD, Vargas-Bonilla JF (2017) Sisfall: A fall and movement dataset. Sensors 17(1):198 CrossRef
53.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)
54.
go back to reference Kong, S., Fowlkes, C.: Low-rank bilinear pooling for fine-grained classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 365–374 (2017) Kong, S., Fowlkes, C.: Low-rank bilinear pooling for fine-grained classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 365–374 (2017)
55.
go back to reference Wang K, He J, Zhang L (2019) Attention-based convolutional neural network for weakly labeled human activities’ recognition with wearable sensors. IEEE Sens J 19(17):7598–7604 CrossRef Wang K, He J, Zhang L (2019) Attention-based convolutional neural network for weakly labeled human activities’ recognition with wearable sensors. IEEE Sens J 19(17):7598–7604 CrossRef
56.
go back to reference Teng Q, Wang K, Zhang L, He J (2020) The layer-wise training convolutional neural networks using local loss for sensor-based human activity recognition. IEEE Sens J 20(13):7265–7274 CrossRef Teng Q, Wang K, Zhang L, He J (2020) The layer-wise training convolutional neural networks using local loss for sensor-based human activity recognition. IEEE Sens J 20(13):7265–7274 CrossRef
57.
go back to reference He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019) He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019)
58.
go back to reference Yu, K., Salzmann, M.: Statistically-motivated second-order pooling. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 600–616 (2018) Yu, K., Salzmann, M.: Statistically-motivated second-order pooling. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 600–616 (2018)
59.
go back to reference Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.: Local temporal bilinear pooling for fine-grained action parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12005–12015 (2019) Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.: Local temporal bilinear pooling for fine-grained action parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12005–12015 (2019)
60.
go back to reference Yu, T., Li, X., Li, P.: Fast and compact bilinear pooling by shifted random maclaurin. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3243–3251 (2021) Yu, T., Li, X., Li, P.: Fast and compact bilinear pooling by shifted random maclaurin. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3243–3251 (2021)
Metadata
Title
Bi-STAN: bilinear spatial-temporal attention network for wearable human activity recognition
Authors
Chenlong Gao
Yiqiang Chen
Xinlong Jiang
Lisha Hu
Zhicheng Zhao
Yuxin Zhang
Publication date
02-02-2023
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01781-1