Skip to main content
Top
Published in: Quantum Information Processing 2/2020

01-02-2020

Bidirectional and cyclic quantum dense coding in a high-dimension system

Published in: Quantum Information Processing | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In light of quantum dense coding in the case of high-dimension quantum states between two parties, by introducing additional local operations for encoding, we propose a brand-new bidirectional quantum dense coding scheme, in which two legitimate agents can simultaneously transmit their different encoded messages to each other. In addition, we present a bidirectional quantum dense coding scheme with a control by virtue of the generalized Hadamard transformation. We show how to implement the cyclic quantum dense coding in an arbitrary high dimension where Alice can transfer her encoded messages \(n_1m_1\) to Bob; meanwhile, Bob can transfer his encoded messages \(n_2m_2\) to Charlie and Charlie can also transfer his encoded messages \(n_3m_3\) to Alice in both clockwise and counterclockwise directions. We can also generalize the cyclic scheme to system having \(n\ge 3\) agents. Thereby, our scheme can realize dense coding in quantum information networks with n agents in arbitrary directions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)CrossRefADSMathSciNetMATH Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)CrossRefADSMathSciNetMATH
2.
go back to reference Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)CrossRefADSMathSciNetMATH Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)CrossRefADSMathSciNetMATH
4.
5.
go back to reference Mattle, K., Weinfurter, H., Kwiat, P.G., et al.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)CrossRefADS Mattle, K., Weinfurter, H., Kwiat, P.G., et al.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)CrossRefADS
6.
go back to reference Liu, X.S., Long, G.L., Tong, D.M., et al.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)CrossRefADS Liu, X.S., Long, G.L., Tong, D.M., et al.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)CrossRefADS
7.
go back to reference Grudka, A., Wojcik, A.: Symmetric scheme for superdense coding between multiparties. Phys. Rev. A 66(1), 014301 (2002)CrossRefADS Grudka, A., Wojcik, A.: Symmetric scheme for superdense coding between multiparties. Phys. Rev. A 66(1), 014301 (2002)CrossRefADS
8.
go back to reference Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71(1), 012311 (2005)CrossRefADS Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71(1), 012311 (2005)CrossRefADS
9.
go back to reference Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72(1), 012329 (2005)CrossRefADS Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72(1), 012329 (2005)CrossRefADS
10.
go back to reference Bruß, D., Lewenstein, M., Sen, A., et al.: Dense coding with multipartite quantum states. Int. J. Quantum Inf. 4(3), 415–428 (2006)CrossRefMATH Bruß, D., Lewenstein, M., Sen, A., et al.: Dense coding with multipartite quantum states. Int. J. Quantum Inf. 4(3), 415–428 (2006)CrossRefMATH
11.
go back to reference Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006)CrossRefADS Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006)CrossRefADS
12.
go back to reference Li, L., Qiu, D.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A Math. Theor. 40(35), 10871 (2007)CrossRefADSMathSciNetMATH Li, L., Qiu, D.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A Math. Theor. 40(35), 10871 (2007)CrossRefADSMathSciNetMATH
13.
14.
go back to reference Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63(5), 054301 (2001)CrossRefADS Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63(5), 054301 (2001)CrossRefADS
16.
go back to reference Huelga, S.F., Vaccaro, J.A., Chefles, A., et al.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)CrossRefADSMATH Huelga, S.F., Vaccaro, J.A., Chefles, A., et al.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)CrossRefADSMATH
17.
go back to reference Fu, H.Z., Tian, X.L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53(6), 1840–1847 (2014)CrossRefMATH Fu, H.Z., Tian, X.L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53(6), 1840–1847 (2014)CrossRefMATH
18.
go back to reference Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)CrossRefMathSciNet Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)CrossRefMathSciNet
19.
go back to reference Zhang, Z.J., Man, Z.X.: Secure direct bidirectional communication protocol using the Einstein–Podolsky–Rosen pair block. arXiv preprint arXiv:quant-ph/0403215 (2004) Zhang, Z.J., Man, Z.X.: Secure direct bidirectional communication protocol using the Einstein–Podolsky–Rosen pair block. arXiv preprint arXiv:​quant-ph/​0403215 (2004)
20.
go back to reference Sarvaghad-Moghaddam, M.: Efficient controlled bidirectional quantum secure direct communication using entanglement swapping and EPR pairs. arXiv preprint arXiv:1902.11188 (2019) Sarvaghad-Moghaddam, M.: Efficient controlled bidirectional quantum secure direct communication using entanglement swapping and EPR pairs. arXiv preprint arXiv:​1902.​11188 (2019)
21.
22.
go back to reference Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)CrossRefMATH Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)CrossRefMATH
24.
go back to reference Vaziri, A., Weihs, G., Zeilinger, A.: Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett. 89(24), 240401 (2002)CrossRefADS Vaziri, A., Weihs, G., Zeilinger, A.: Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett. 89(24), 240401 (2002)CrossRefADS
25.
go back to reference Dada, A.C., Leach, J., Buller, G.S., et al.: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7(9), 677 (2011)CrossRef Dada, A.C., Leach, J., Buller, G.S., et al.: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7(9), 677 (2011)CrossRef
26.
go back to reference Agnew, M., Leach, J., McLaren, M., et al.: Tomography of the quantum state of photons entangled in high dimensions. Phys. Rev. A 84(6), 062101 (2011)CrossRefADS Agnew, M., Leach, J., McLaren, M., et al.: Tomography of the quantum state of photons entangled in high dimensions. Phys. Rev. A 84(6), 062101 (2011)CrossRefADS
27.
go back to reference Giovannini, D., Romero, J., Leach, J., et al.: Characterization of high-dimensional entangled systems via mutually unbiased measurements. Phys. Rev. Lett. 110(14), 143601 (2013)CrossRefADS Giovannini, D., Romero, J., Leach, J., et al.: Characterization of high-dimensional entangled systems via mutually unbiased measurements. Phys. Rev. Lett. 110(14), 143601 (2013)CrossRefADS
28.
go back to reference Krenn, M., Huber, M., Fickler, R., et al.: Generation and confirmation of a (100\(\times \)100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014)CrossRefADS Krenn, M., Huber, M., Fickler, R., et al.: Generation and confirmation of a (100\(\times \)100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014)CrossRefADS
29.
go back to reference Malik, M., Erhard, M., Huber, M., et al.: Multi-photon entanglement in high dimensions. Nat. Photon. 10(4), 248 (2016)CrossRefADS Malik, M., Erhard, M., Huber, M., et al.: Multi-photon entanglement in high dimensions. Nat. Photon. 10(4), 248 (2016)CrossRefADS
30.
go back to reference Zhang, Y., Roux, F.S., Konrad, T., et al.: Engineering two-photon high-dimensional states through quantum interference. Sci. Adv. 2(2), e1501165 (2016)CrossRefADS Zhang, Y., Roux, F.S., Konrad, T., et al.: Engineering two-photon high-dimensional states through quantum interference. Sci. Adv. 2(2), e1501165 (2016)CrossRefADS
31.
go back to reference Fujiwara, M., Takeoka, M., Mizuno, J., et al.: Exceeding the classical capacity limit in a quantum optical channel. Phys. Rev. Lett. 90(16), 167906 (2003)CrossRefADS Fujiwara, M., Takeoka, M., Mizuno, J., et al.: Exceeding the classical capacity limit in a quantum optical channel. Phys. Rev. Lett. 90(16), 167906 (2003)CrossRefADS
32.
go back to reference Mafu, M., Dudley, A., Goyal, S., et al.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88(3), 032305 (2013)CrossRefADS Mafu, M., Dudley, A., Goyal, S., et al.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88(3), 032305 (2013)CrossRefADS
33.
go back to reference Cerf, N.J., Bourennane, M., Karlsson, A., et al.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)CrossRefADS Cerf, N.J., Bourennane, M., Karlsson, A., et al.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)CrossRefADS
34.
go back to reference Durt, T., Kaszlikowski, D., Chen, J.L., et al.: Security of quantum key distributions with entangled qudits. Phys. Rev. A 69(3), 032313 (2004)CrossRefADS Durt, T., Kaszlikowski, D., Chen, J.L., et al.: Security of quantum key distributions with entangled qudits. Phys. Rev. A 69(3), 032313 (2004)CrossRefADS
35.
go back to reference Huber, M., Pawlowski, M.: Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement. Phys. Rev. A 88(3), 032309 (2013)CrossRefADS Huber, M., Pawlowski, M.: Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement. Phys. Rev. A 88(3), 032309 (2013)CrossRefADS
36.
go back to reference Kaszlikowski, D., Gnaciski, P., Żukowski, M., et al.: Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85(21), 4418 (2000)CrossRefADS Kaszlikowski, D., Gnaciski, P., Żukowski, M., et al.: Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85(21), 4418 (2000)CrossRefADS
37.
go back to reference Son, W., Lee, J., Kim, M.S.: Generic Bell inequalities for multipartite arbitrary dimensional systems. Phys. Rev. Lett. 96(6), 060406 (2006)CrossRefADSMathSciNet Son, W., Lee, J., Kim, M.S.: Generic Bell inequalities for multipartite arbitrary dimensional systems. Phys. Rev. Lett. 96(6), 060406 (2006)CrossRefADSMathSciNet
38.
39.
40.
go back to reference Lanyon, B.P., Barbieri, M., Almeida, M.P., et al.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5(2), 134 (2009)CrossRef Lanyon, B.P., Barbieri, M., Almeida, M.P., et al.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5(2), 134 (2009)CrossRef
41.
go back to reference Mair, A., Vaziri, A., Weihs, G., et al.: Entanglement of the orbital angular momentum states of photons. Nature 412(6844), 313 (2001)CrossRefADS Mair, A., Vaziri, A., Weihs, G., et al.: Entanglement of the orbital angular momentum states of photons. Nature 412(6844), 313 (2001)CrossRefADS
42.
go back to reference Gu, B., Li, C.Q., Xu, F., et al.: High-capacity three-party quantum secret sharing with superdense coding. Chin. Phys. B 18(11), 4690 (2009)CrossRefADS Gu, B., Li, C.Q., Xu, F., et al.: High-capacity three-party quantum secret sharing with superdense coding. Chin. Phys. B 18(11), 4690 (2009)CrossRefADS
44.
go back to reference Zhan, Y.B.: Controlled teleportation of high-dimension quantum-states with generalized Bell-state measurement. Chin. Phys. 16(9), 2557 (2007)CrossRefADS Zhan, Y.B.: Controlled teleportation of high-dimension quantum-states with generalized Bell-state measurement. Chin. Phys. 16(9), 2557 (2007)CrossRefADS
45.
go back to reference Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)CrossRefADS Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)CrossRefADS
46.
go back to reference Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A 65(5), 052331 (2002)CrossRefADS Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A 65(5), 052331 (2002)CrossRefADS
47.
go back to reference Gottesman, D.: Fault-tolerant quantum computation with higher-dimensional systems. Physics 10(10), 302–313 (1998)MathSciNetMATH Gottesman, D.: Fault-tolerant quantum computation with higher-dimensional systems. Physics 10(10), 302–313 (1998)MathSciNetMATH
48.
go back to reference Wang, F., Erhard, M., Babazadeh, A., et al.: Generation of the complete four-dimensional Bell basis. Optica 4(12), 1462–1467 (2017)CrossRefADS Wang, F., Erhard, M., Babazadeh, A., et al.: Generation of the complete four-dimensional Bell basis. Optica 4(12), 1462–1467 (2017)CrossRefADS
49.
go back to reference Reck, M., Zeilinger, A., Bernstein, H.J., et al.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58 (1994)CrossRefADS Reck, M., Zeilinger, A., Bernstein, H.J., et al.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58 (1994)CrossRefADS
50.
go back to reference Lanyon, B.P., Weinhold, T.J., Langford, N.K., et al.: Manipulating biphotonic qutrits. Phys. Rev. Lett. 100(6), 060504 (2008)CrossRefADS Lanyon, B.P., Weinhold, T.J., Langford, N.K., et al.: Manipulating biphotonic qutrits. Phys. Rev. Lett. 100(6), 060504 (2008)CrossRefADS
51.
go back to reference Lin, Q., He, B.: Bi-directional mapping between polarization and spatially encoded photonic qutrits. Phys. Rev. A 80(6), 062312 (2009)CrossRefADS Lin, Q., He, B.: Bi-directional mapping between polarization and spatially encoded photonic qutrits. Phys. Rev. A 80(6), 062312 (2009)CrossRefADS
52.
go back to reference Lin, Q.: Optical realization of universal unitary operation of single partite polarization encoded qudit. Sci. Sin. 44(3), 317–325 (2014) Lin, Q.: Optical realization of universal unitary operation of single partite polarization encoded qudit. Sci. Sin. 44(3), 317–325 (2014)
53.
go back to reference Babazadeh, A., Erhard, M., Wang, F., et al.: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119(18), 180510 (2017)CrossRefADS Babazadeh, A., Erhard, M., Wang, F., et al.: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119(18), 180510 (2017)CrossRefADS
54.
go back to reference Calsamiglia, J.: Generalized measurements by linear elements. Phys. Rev. A 65(3), 030301 (2002)CrossRefADS Calsamiglia, J.: Generalized measurements by linear elements. Phys. Rev. A 65(3), 030301 (2002)CrossRefADS
55.
go back to reference Zhang, H., Zhang, C., Hu, X.M., et al.: Arbitrary two-particle high-dimensional Bell-state measurement by auxiliary entanglement. Phys. Rev. A 99(5), 052301 (2019)CrossRefADS Zhang, H., Zhang, C., Hu, X.M., et al.: Arbitrary two-particle high-dimensional Bell-state measurement by auxiliary entanglement. Phys. Rev. A 99(5), 052301 (2019)CrossRefADS
56.
go back to reference Hu, X.M., Guo, Y., Liu, B.H., et al.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4(7), eaat9304 (2018)CrossRefADS Hu, X.M., Guo, Y., Liu, B.H., et al.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4(7), eaat9304 (2018)CrossRefADS
57.
go back to reference Guo, Y., Liu, B.H., Li, C.F., et al.: Advances in quantum dense coding. Adv. Quantum Technol. 2(5–6), 1900011 (2019)CrossRef Guo, Y., Liu, B.H., Li, C.F., et al.: Advances in quantum dense coding. Adv. Quantum Technol. 2(5–6), 1900011 (2019)CrossRef
Metadata
Title
Bidirectional and cyclic quantum dense coding in a high-dimension system
Publication date
01-02-2020
Published in
Quantum Information Processing / Issue 2/2020
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2526-9

Other articles of this Issue 2/2020

Quantum Information Processing 2/2020 Go to the issue