Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2021

07-01-2021 | Original Research

Bifurcations in a modified Leslie–Gower predator–prey discrete model with Michaelis–Menten prey harvesting

Authors: Anuraj Singh, Pradeep Malik

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a modified Leslie–Gower predator–prey discrete model with Michaelis–Menten type prey harvesting is investigated. It is shown that the model exhibits several bifurcations of codimension 1 viz. Neimark–Sacker bifurcation, transcritical bifurcation and flip bifurcation on varying one parameter. Bifurcation theory and center manifold theory are used to establish the conditions for the existence of these bifurcations. Moreover, existence of Bogdanov–Takens bifurcation of codimension 2 (i.e. two parameters must be varied for the occurrence of bifurcation) is exhibited. The non-degeneracy conditions are determined for occurrence of Bogdanov–Takens bifurcation. The extensive numerical simulation is performed to demonstrate the analytical findings. The system exhibits periodic solutions including flip bifurcation and Neimark–Sacker bifurcation followed by the wide range of dense chaos.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agiza, H.N., ELabbasy, E.M., EL-Metwally, H., Elsadany, A.A.: Chaotic dynamics of a discrete prey-predator model with Holling type II. Nonlinear Anal. Real World Appl. 10, 116–129 (2009)MathSciNetMATHCrossRef Agiza, H.N., ELabbasy, E.M., EL-Metwally, H., Elsadany, A.A.: Chaotic dynamics of a discrete prey-predator model with Holling type II. Nonlinear Anal. Real World Appl. 10, 116–129 (2009)MathSciNetMATHCrossRef
2.
go back to reference Ajaz, M.B., Saeed, U., Din, Q., Ali, I., Siddiqui, M.I.: Bifurcation analysis and chaos control in discrete-time modified Leslie–Gower prey harvesting model. Adv. Differ. Equ. 24, 45 (2020)MathSciNetCrossRef Ajaz, M.B., Saeed, U., Din, Q., Ali, I., Siddiqui, M.I.: Bifurcation analysis and chaos control in discrete-time modified Leslie–Gower prey harvesting model. Adv. Differ. Equ. 24, 45 (2020)MathSciNetCrossRef
3.
go back to reference Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Grundlehren Math. Wiss. Springer, Berlin (1983)CrossRef Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Grundlehren Math. Wiss. Springer, Berlin (1983)CrossRef
4.
go back to reference Aziz-Alaoui, M.A., Daher Okiye, M.: Boundedness and global stability for a predator-prey model with modified Leslie–Gower and Holling-Type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)MathSciNetMATHCrossRef Aziz-Alaoui, M.A., Daher Okiye, M.: Boundedness and global stability for a predator-prey model with modified Leslie–Gower and Holling-Type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)MathSciNetMATHCrossRef
5.
go back to reference Bogdanov, R.I.: Versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues. Funkc. Anal. i Priložen. 9, 63 (1975)MathSciNet Bogdanov, R.I.: Versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues. Funkc. Anal. i Priložen. 9, 63 (1975)MathSciNet
6.
go back to reference Bogdanov, R.: Bifurcations of a limit cycle for a family of vector fields on the plane. Sel. Math. Sov. 1, 373–388 (1981)MATH Bogdanov, R.: Bifurcations of a limit cycle for a family of vector fields on the plane. Sel. Math. Sov. 1, 373–388 (1981)MATH
7.
go back to reference Broer, H.W., Roussarie, R., Simó, C.: On the Bogdanov–Takens bifurcation for planar diffeomorphisms. In: International Conference on Differential Equations. 1, 2 (Barcelona, 1991), pp. 81–92. World Sci. Publ, River Edge, NJ (1993) Broer, H.W., Roussarie, R., Simó, C.: On the Bogdanov–Takens bifurcation for planar diffeomorphisms. In: International Conference on Differential Equations. 1, 2 (Barcelona, 1991), pp. 81–92. World Sci. Publ, River Edge, NJ (1993)
8.
go back to reference Broer, H., Roussarie, R., Simó, C.: Invariant circles in the Bogdanov–Takens bifurcation for diffeomorphisms. Ergod. Theory Dyn. Syst. 16, 1147–1172 (1996)MathSciNetMATHCrossRef Broer, H., Roussarie, R., Simó, C.: Invariant circles in the Bogdanov–Takens bifurcation for diffeomorphisms. Ergod. Theory Dyn. Syst. 16, 1147–1172 (1996)MathSciNetMATHCrossRef
9.
go back to reference Chen, Q., Teng, Z.: Codimension-two bifurcation analysis of a discrete predator–prey model with nonmonotonic functional response. J. Differ. Equ. Appl. 23, 2093–2115 (2017)MathSciNetMATHCrossRef Chen, Q., Teng, Z.: Codimension-two bifurcation analysis of a discrete predator–prey model with nonmonotonic functional response. J. Differ. Equ. Appl. 23, 2093–2115 (2017)MathSciNetMATHCrossRef
10.
11.
go back to reference Chow, S., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)MATHCrossRef Chow, S., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)MATHCrossRef
13.
go back to reference Collings, J.B.: The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model. J. Math. Biol. 36, 149–168 (1997)MathSciNetMATHCrossRef Collings, J.B.: The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model. J. Math. Biol. 36, 149–168 (1997)MathSciNetMATHCrossRef
14.
go back to reference Din, Q.: Complexity and chaos control in a discrete-time prey–predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)MathSciNetMATHCrossRef Din, Q.: Complexity and chaos control in a discrete-time prey–predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)MathSciNetMATHCrossRef
15.
go back to reference Du, Y., Peng, R., Wang, M.: Effect of a protection zone in the diffusive Leslie predator–prey model. J. Differ. Equ. 246, 3932–3956 (2009)MathSciNetMATHCrossRef Du, Y., Peng, R., Wang, M.: Effect of a protection zone in the diffusive Leslie predator–prey model. J. Differ. Equ. 246, 3932–3956 (2009)MathSciNetMATHCrossRef
16.
go back to reference Dumortier, F., Roussarie, R., Sotomayor, J., Zoladek, H.: Bifurcations of Planar Vector Fields. Lecture Notes in Math. Springer, New York (1991)MATHCrossRef Dumortier, F., Roussarie, R., Sotomayor, J., Zoladek, H.: Bifurcations of Planar Vector Fields. Lecture Notes in Math. Springer, New York (1991)MATHCrossRef
17.
go back to reference Elabbasy, E.M., Elsadany, A.A., Zhang, Y.: Bifurcation analysis and chaos in a discrete reduced Lorenz system. Appl. Math. Comput. 228, 184–194 (2014)MathSciNetMATH Elabbasy, E.M., Elsadany, A.A., Zhang, Y.: Bifurcation analysis and chaos in a discrete reduced Lorenz system. Appl. Math. Comput. 228, 184–194 (2014)MathSciNetMATH
18.
go back to reference Elaydi, S.N.: Discrete Chaos: With Applications in Science and Engineering. Chapman and Hall/CRC, Boca Raton (2007)CrossRef Elaydi, S.N.: Discrete Chaos: With Applications in Science and Engineering. Chapman and Hall/CRC, Boca Raton (2007)CrossRef
19.
go back to reference Gakkhar, S., Singh, A.: Control of chaos due to additional predator in the Hastings–Powell food chain model. J. Math. Anal. Appl. 385, 423–438 (2012)MathSciNetMATHCrossRef Gakkhar, S., Singh, A.: Control of chaos due to additional predator in the Hastings–Powell food chain model. J. Math. Anal. Appl. 385, 423–438 (2012)MathSciNetMATHCrossRef
20.
go back to reference Gakkhar, S., Singh, A.: Complex dynamics in a prey predator system with multiple delays. Commun. Nonlinear Sci. Numer. Simul. 17, 914–929 (2012)MathSciNetMATHCrossRef Gakkhar, S., Singh, A.: Complex dynamics in a prey predator system with multiple delays. Commun. Nonlinear Sci. Numer. Simul. 17, 914–929 (2012)MathSciNetMATHCrossRef
21.
go back to reference Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)MATHCrossRef Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)MATHCrossRef
22.
go back to reference Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)MathSciNetMATHCrossRef Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)MathSciNetMATHCrossRef
24.
go back to reference Huang, J., Xiao, D.: Analyses of bifurcations and stability in a predator–prey system with Holling type-IV functional response. Acta Math. Appl. Sin. Eng. Ser. 20, 167–178 (2004)MathSciNetMATHCrossRef Huang, J., Xiao, D.: Analyses of bifurcations and stability in a predator–prey system with Holling type-IV functional response. Acta Math. Appl. Sin. Eng. Ser. 20, 167–178 (2004)MathSciNetMATHCrossRef
25.
go back to reference Huang, J.: Bifurcations and chaos in a discrete predator-prey system with Holling type-IV functional response. Acta Math. Appl. Sin. Engl. Ser. 21, 157–176 (2005)MathSciNetMATHCrossRef Huang, J.: Bifurcations and chaos in a discrete predator-prey system with Holling type-IV functional response. Acta Math. Appl. Sin. Engl. Ser. 21, 157–176 (2005)MathSciNetMATHCrossRef
26.
go back to reference Huang, J., Gong, Y., Ruan, S.: Bifurcation analysis in a predator–prey model with constant-yield predator harvesting. Discrete Contin. Dyn. Syst. Ser. B 18, 2101–2121 (2013)MathSciNetMATH Huang, J., Gong, Y., Ruan, S.: Bifurcation analysis in a predator–prey model with constant-yield predator harvesting. Discrete Contin. Dyn. Syst. Ser. B 18, 2101–2121 (2013)MathSciNetMATH
27.
go back to reference Huang, J., Gong, Y., Chen, J.: Multiple bifurcations in a predator–prey system of Holling and Leslie type with constant-yield prey harvesting. J. Bifurc. Chaos Appl. Sci. Eng. 23, 1350164 (2013)MathSciNetMATHCrossRef Huang, J., Gong, Y., Chen, J.: Multiple bifurcations in a predator–prey system of Holling and Leslie type with constant-yield prey harvesting. J. Bifurc. Chaos Appl. Sci. Eng. 23, 1350164 (2013)MathSciNetMATHCrossRef
28.
go back to reference Huang, J., Liu, S., Ruan, S., Xiao, D.: Bifurcations in a discrete predator–prey model with nonmonotonic functional response. J. Math. Anal. Appl. 464, 201–230 (2018)MathSciNetMATHCrossRef Huang, J., Liu, S., Ruan, S., Xiao, D.: Bifurcations in a discrete predator–prey model with nonmonotonic functional response. J. Math. Anal. Appl. 464, 201–230 (2018)MathSciNetMATHCrossRef
29.
go back to reference Ji, C., Jiang, D., Shi, N.: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009)MathSciNetMATHCrossRef Ji, C., Jiang, D., Shi, N.: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009)MathSciNetMATHCrossRef
30.
go back to reference Ji, C., Jiang, D., Shi, N.: A note on a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 377, 435–440 (2011)MathSciNetMATHCrossRef Ji, C., Jiang, D., Shi, N.: A note on a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 377, 435–440 (2011)MathSciNetMATHCrossRef
31.
go back to reference Kong, L., Zhu, C.: Bogdanov–Takens bifurcations of codimension 2 and 3 in a Leslie–Gower predator–prey model with Michaelis–Menten-type prey harvesting. Math. Methods Appl. Sci. 40, 1–17 (2017)MathSciNetMATHCrossRef Kong, L., Zhu, C.: Bogdanov–Takens bifurcations of codimension 2 and 3 in a Leslie–Gower predator–prey model with Michaelis–Menten-type prey harvesting. Math. Methods Appl. Sci. 40, 1–17 (2017)MathSciNetMATHCrossRef
32.
go back to reference Krishna, S.V., Srinivasu, P.D.N., Kaymakcalan, B.: Conservation of an ecosystem through optimal taxation. Bull. Math. Biol. 60, 569–584 (1998)MATHCrossRef Krishna, S.V., Srinivasu, P.D.N., Kaymakcalan, B.: Conservation of an ecosystem through optimal taxation. Bull. Math. Biol. 60, 569–584 (1998)MATHCrossRef
33.
go back to reference Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Springer, New York (1998)MATH Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Springer, New York (1998)MATH
34.
go back to reference Levine, S.H.: Discrete time modeling of ecosystems with applications in environmental enrichment. Math. Biosci. 24, 307–317 (1975)MATHCrossRef Levine, S.H.: Discrete time modeling of ecosystems with applications in environmental enrichment. Math. Biosci. 24, 307–317 (1975)MATHCrossRef
35.
go back to reference Li, S., Zhang, W.: Bifurcations of a discrete prey–predator model with Holling type II functional response. Discrete Contin. Dyn. Syst. Ser B 14, 159–176 (2010)MathSciNetMATH Li, S., Zhang, W.: Bifurcations of a discrete prey–predator model with Holling type II functional response. Discrete Contin. Dyn. Syst. Ser B 14, 159–176 (2010)MathSciNetMATH
36.
go back to reference Li, L., Wang, Z.J.: Global stability of periodic solutions for a discrete predator–prey system with functional response. Nonlinear Dyn. 72, 507–516 (2013)MathSciNetMATHCrossRef Li, L., Wang, Z.J.: Global stability of periodic solutions for a discrete predator–prey system with functional response. Nonlinear Dyn. 72, 507–516 (2013)MathSciNetMATHCrossRef
37.
go back to reference Liu, X., Xiao, D.: Bifurcations in a discrete time Lotka–Volterra predator–prey system. Discrete Contin. Dyn. Syst. Ser. B. 69, 559–572 (2006)MathSciNetMATH Liu, X., Xiao, D.: Bifurcations in a discrete time Lotka–Volterra predator–prey system. Discrete Contin. Dyn. Syst. Ser. B. 69, 559–572 (2006)MathSciNetMATH
38.
39.
go back to reference Liu, Y., Liu, Z., Wang, R.: Bogdanov–Takens bifurcation with codimension three of a predator–prey system suffering the additive Allee effect. Int. J. Biomath. 10, 1750044 (2017)MathSciNetMATHCrossRef Liu, Y., Liu, Z., Wang, R.: Bogdanov–Takens bifurcation with codimension three of a predator–prey system suffering the additive Allee effect. Int. J. Biomath. 10, 1750044 (2017)MathSciNetMATHCrossRef
40.
go back to reference Liu, W., Cai, D.: Bifurcation, chaos analysis and control in a discrete-time predator–prey system. Adv. Differ. Equ. 2019, 11 (2019)MathSciNetMATHCrossRef Liu, W., Cai, D.: Bifurcation, chaos analysis and control in a discrete-time predator–prey system. Adv. Differ. Equ. 2019, 11 (2019)MathSciNetMATHCrossRef
41.
go back to reference May, R.M.: Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974)CrossRef May, R.M.: Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974)CrossRef
42.
go back to reference Singh, A., Gakkhar, S.: Stabilization of modified Leslie–Gower prey–predator model. Differ. Equ. Dyn. Syst. 22, 239–249 (2014)MathSciNetMATHCrossRef Singh, A., Gakkhar, S.: Stabilization of modified Leslie–Gower prey–predator model. Differ. Equ. Dyn. Syst. 22, 239–249 (2014)MathSciNetMATHCrossRef
43.
go back to reference Singh, A., Elsadany, A.A., Elsonbaty, A.: Complex dynamics of a discrete fractional-order Leslie–Gower predator–prey model. Math. Methods Appl. Sci. 42, 3992–4007 (2019)MathSciNetMATHCrossRef Singh, A., Elsadany, A.A., Elsonbaty, A.: Complex dynamics of a discrete fractional-order Leslie–Gower predator–prey model. Math. Methods Appl. Sci. 42, 3992–4007 (2019)MathSciNetMATHCrossRef
44.
go back to reference Singh, A., Deolia, P.: Dynamical analysis and chaos control in discrete-time prey–predator model. Commun. Nonlinear Sci. Numer. Simul. 90, 105313 (2020)MathSciNetMATHCrossRef Singh, A., Deolia, P.: Dynamical analysis and chaos control in discrete-time prey–predator model. Commun. Nonlinear Sci. Numer. Simul. 90, 105313 (2020)MathSciNetMATHCrossRef
45.
go back to reference Smith, J.M.: Mathematical Ideas in Biology. Cambridge University Press, Cambridge (1968)CrossRef Smith, J.M.: Mathematical Ideas in Biology. Cambridge University Press, Cambridge (1968)CrossRef
46.
go back to reference Takens, F.: Forced oscillations and bifurcations. Comm. Math. Inst. Rijksuniv. Utrecht 2, 1–111 (1974)MathSciNetMATH Takens, F.: Forced oscillations and bifurcations. Comm. Math. Inst. Rijksuniv. Utrecht 2, 1–111 (1974)MathSciNetMATH
48.
go back to reference Ruan, S., Xiao, D.: Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)MathSciNetMATHCrossRef Ruan, S., Xiao, D.: Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)MathSciNetMATHCrossRef
49.
go back to reference Xiao, D., Ruan, S.: Bogdanov–Takens bifurcations in predator–prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493–506 (1999)MathSciNetMATH Xiao, D., Ruan, S.: Bogdanov–Takens bifurcations in predator–prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493–506 (1999)MathSciNetMATH
50.
go back to reference Xiang, C., Huang, J., Ruan, S., Xiao, D.: Bifurcation anlysis in a host-generalist parasitoid model with Holling II functional response. J. Differ. Equ. 268, 4618–4662 (2020)MATHCrossRef Xiang, C., Huang, J., Ruan, S., Xiao, D.: Bifurcation anlysis in a host-generalist parasitoid model with Holling II functional response. J. Differ. Equ. 268, 4618–4662 (2020)MATHCrossRef
51.
Metadata
Title
Bifurcations in a modified Leslie–Gower predator–prey discrete model with Michaelis–Menten prey harvesting
Authors
Anuraj Singh
Pradeep Malik
Publication date
07-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2021
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01491-9

Other articles of this Issue 1-2/2021

Journal of Applied Mathematics and Computing 1-2/2021 Go to the issue

Premium Partner