Skip to main content
Top

2016 | OriginalPaper | Chapter

Big Data and Cancer Research

Author : Binay Panda

Published in: Big Data Analytics

Publisher: Springer India

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The advent of high-throughput technology has revolutionized biological sciences in the last two decades enabling experiments on the whole genome scale. Data from such large-scale experiments are interpreted at system’s level to understand the interplay among genome, transcriptome, epigenome, proteome, metabolome, and regulome.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564CrossRef Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564CrossRef
2.
go back to reference Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRef Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRef
3.
go back to reference Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRef Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRef
4.
go back to reference Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRef Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRef
5.
go back to reference Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46CrossRef Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46CrossRef
6.
go back to reference Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876CrossRef Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876CrossRef
7.
go back to reference Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59CrossRef Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59CrossRef
8.
go back to reference Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large scale genome resequencing. PLoS ONE 4:e7767CrossRef Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large scale genome resequencing. PLoS ONE 4:e7767CrossRef
9.
go back to reference Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large DNA databases. Genome Res 11:1725–1729CrossRef Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large DNA databases. Genome Res 11:1725–1729CrossRef
11.
go back to reference Lunter G, Goodson M (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21:936–939CrossRef Lunter G, Goodson M (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21:936–939CrossRef
13.
go back to reference Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinform., Chap 11:Unit 11–17 Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinform., Chap 11:Unit 11–17
14.
go back to reference Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRef Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRef
15.
go back to reference Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760CrossRef Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760CrossRef
16.
go back to reference Liu Y, Schmidt B, Maskell DL (2012) CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics 28:1830–1837CrossRef Liu Y, Schmidt B, Maskell DL (2012) CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics 28:1830–1837CrossRef
17.
go back to reference Klus P, Lam S, Lyberg D, Cheung MS, Pullan G, McFarlane I, Yeo G, Lam BY (2012) BarraCUDA—a fast short read sequence aligner using graphics processing units. BMC Res Notes 5:27CrossRef Klus P, Lam S, Lyberg D, Cheung MS, Pullan G, McFarlane I, Yeo G, Lam BY (2012) BarraCUDA—a fast short read sequence aligner using graphics processing units. BMC Res Notes 5:27CrossRef
18.
go back to reference Gupta S, Choudhury S, Panda B (2014) MUSIC: A hybrid-computing environment for Burrows-Wheeler alignment for massive amount of short read sequence data. MECBME 2014 (indexed in IEEE Xplore) Gupta S, Choudhury S, Panda B (2014) MUSIC: A hybrid-computing environment for Burrows-Wheeler alignment for massive amount of short read sequence data. MECBME 2014 (indexed in IEEE Xplore)
19.
go back to reference Schatz MC, Trapnell C, Delcher AL, Varshney A (2007) High-throughput sequence alignment using graphics processing units. BMC Bioinform 8:474CrossRef Schatz MC, Trapnell C, Delcher AL, Varshney A (2007) High-throughput sequence alignment using graphics processing units. BMC Bioinform 8:474CrossRef
20.
go back to reference Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRef Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRef
21.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303CrossRef McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303CrossRef
22.
go back to reference DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498CrossRef DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498CrossRef
23.
go back to reference Pattnaik S, Vaidyanathan S, Pooja DG, Deepak S, Panda B (2012) Customisation of the exome data analysis pipeline using a combinatorial approach. PLoS ONE 7:e30080CrossRef Pattnaik S, Vaidyanathan S, Pooja DG, Deepak S, Panda B (2012) Customisation of the exome data analysis pipeline using a combinatorial approach. PLoS ONE 7:e30080CrossRef
24.
go back to reference Cibulskis K, McKenna A, Fennell T, Banks E, DePristo M, Getz G (2011) ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27:2601–2602 Cibulskis K, McKenna A, Fennell T, Banks E, DePristo M, Getz G (2011) ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27:2601–2602
25.
go back to reference Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811CrossRef Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811CrossRef
26.
go back to reference Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A et al (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39:D945–D950CrossRef Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A et al (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39:D945–D950CrossRef
27.
go back to reference Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, Kok CY, Jia M, Ewing R, Menzies A et al (2010) COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 38:D652–D657CrossRef Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, Kok CY, Jia M, Ewing R, Menzies A et al (2010) COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res 38:D652–D657CrossRef
28.
go back to reference Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164CrossRef Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164CrossRef
29.
go back to reference Yourshaw M, Taylor SP, Rao AR, Martin MG, Nelson SF (2015) Rich annotation of DNA sequencing variants by leveraging the Ensembl Variant Effect Predictor with plugins. Brief Bioinform 16:255–264CrossRef Yourshaw M, Taylor SP, Rao AR, Martin MG, Nelson SF (2015) Rich annotation of DNA sequencing variants by leveraging the Ensembl Variant Effect Predictor with plugins. Brief Bioinform 16:255–264CrossRef
30.
go back to reference Douville C, Carter H, Kim R, Niknafs N, Diekhans M, Stenson PD, Cooper DN, Ryan M, Karchin R (2013) CRAVAT: cancer-related analysis of variants toolkit. Bioinformatics 29:647–648CrossRef Douville C, Carter H, Kim R, Niknafs N, Diekhans M, Stenson PD, Cooper DN, Ryan M, Karchin R (2013) CRAVAT: cancer-related analysis of variants toolkit. Bioinformatics 29:647–648CrossRef
31.
go back to reference Gundem G, Perez-Llamas C, Jene-Sanz A, Kedzierska A, Islam A, Deu-Pons J, Furney SJ, Lopez-Bigas N (2010) IntOGen: integration and data mining of multidimensional oncogenomic data. Nat Methods 7:92–93CrossRef Gundem G, Perez-Llamas C, Jene-Sanz A, Kedzierska A, Islam A, Deu-Pons J, Furney SJ, Lopez-Bigas N (2010) IntOGen: integration and data mining of multidimensional oncogenomic data. Nat Methods 7:92–93CrossRef
32.
go back to reference Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218CrossRef Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218CrossRef
34.
go back to reference Sales G, Calura E, Martini P, Romualdi C (2013) Graphite Web: Web tool for gene set analysis exploiting pathway topology. Nucleic Acids Res 41:W89–W97CrossRef Sales G, Calura E, Martini P, Romualdi C (2013) Graphite Web: Web tool for gene set analysis exploiting pathway topology. Nucleic Acids Res 41:W89–W97CrossRef
35.
go back to reference Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD (2010) Cytoscape Web: an interactive web-based network browser. Bioinformatics 26:2347–2348CrossRef Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD (2010) Cytoscape Web: an interactive web-based network browser. Bioinformatics 26:2347–2348CrossRef
36.
go back to reference Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382CrossRef Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382CrossRef
37.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRef
38.
go back to reference Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRef Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRef
39.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404CrossRef Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404CrossRef
40.
go back to reference Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26CrossRef Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26CrossRef
41.
go back to reference Hu H, Wen Y, Chua TS, Li X (2014) Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2:652–687CrossRef Hu H, Wen Y, Chua TS, Li X (2014) Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2:652–687CrossRef
42.
go back to reference Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS et al (2010) International network of cancer genome projects. Nature 464:993–998CrossRef Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS et al (2010) International network of cancer genome projects. Nature 464:993–998CrossRef
43.
go back to reference Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501CrossRef Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501CrossRef
44.
go back to reference Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S, Mudie LJ et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–1010CrossRef Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S, Mudie LJ et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–1010CrossRef
45.
go back to reference van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, Edkins S, Hardy C, O’Meara S, Teague J et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41:521–523CrossRef van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, Edkins S, Hardy C, O’Meara S, Teague J et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41:521–523CrossRef
46.
go back to reference Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196CrossRef Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196CrossRef
47.
go back to reference Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C et al (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184–190CrossRef Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C et al (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184–190CrossRef
48.
go back to reference Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, Pellagatti A, Wainscoat JS, Hellstrom-Lindberg E, Gambacorti-Passerini C et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365:1384–1395CrossRef Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, Pellagatti A, Wainscoat JS, Hellstrom-Lindberg E, Gambacorti-Passerini C et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365:1384–1395CrossRef
49.
go back to reference Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, Escaramis G, Jares P, Bea S, Gonzalez-Diaz M et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475:101–105CrossRef Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, Escaramis G, Jares P, Bea S, Gonzalez-Diaz M et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475:101–105CrossRef
50.
go back to reference Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40CrossRef Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40CrossRef
51.
go back to reference Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469:539–542CrossRef Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469:539–542CrossRef
52.
go back to reference Greenman CD, Pleasance ED, Newman S, Yang F, Fu B, Nik-Zainal S, Jones D, Lau KW, Carter N, Edwards PA et al (2012) Estimation of rearrangement phylogeny for cancer genomes. Genome Res 22:346–361CrossRef Greenman CD, Pleasance ED, Newman S, Yang F, Fu B, Nik-Zainal S, Jones D, Lau KW, Carter N, Edwards PA et al (2012) Estimation of rearrangement phylogeny for cancer genomes. Genome Res 22:346–361CrossRef
53.
go back to reference Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, Jones D, Hinton J, Marshall J, Stebbings LA et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993CrossRef Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, Jones D, Hinton J, Marshall J, Stebbings LA et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993CrossRef
54.
go back to reference Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404 Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404
55.
go back to reference Wang L, Tsutsumi S, Kawaguchi T, Nagasaki K, Tatsuno K, Yamamoto S, Sang F, Sonoda K, Sugawara M, Saiura A et al (2012) Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. Genome Res 22:208–219CrossRef Wang L, Tsutsumi S, Kawaguchi T, Nagasaki K, Tatsuno K, Yamamoto S, Sang F, Sonoda K, Sugawara M, Saiura A et al (2012) Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. Genome Res 22:208–219CrossRef
56.
go back to reference Cancer Genome Atlas N (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576–582CrossRef Cancer Genome Atlas N (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576–582CrossRef
57.
go back to reference India Project Team of the International Cancer Genome C (2013) Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun 4:2873 India Project Team of the International Cancer Genome C (2013) Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun 4:2873
58.
go back to reference Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N et al (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44:685–689CrossRef Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N et al (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44:685–689CrossRef
59.
go back to reference Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, Jane-Valbuena J, Friedrich DC, Kryukov G, Carter SL et al (2014) Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med 20:682–688CrossRef Van Allen EM, Wagle N, Stojanov P, Perrin DL, Cibulskis K, Marlow S, Jane-Valbuena J, Friedrich DC, Kryukov G, Carter SL et al (2014) Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat Med 20:682–688CrossRef
60.
go back to reference Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L et al (2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 365:2497–2506CrossRef Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L et al (2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 365:2497–2506CrossRef
61.
go back to reference Craig DW, O’Shaughnessy JA, Kiefer JA, Aldrich J, Sinari S, Moses TM, Wong S, Dinh J, Christoforides A, Blum JL et al (2013) Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther 12:104–116CrossRef Craig DW, O’Shaughnessy JA, Kiefer JA, Aldrich J, Sinari S, Moses TM, Wong S, Dinh J, Christoforides A, Blum JL et al (2013) Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther 12:104–116CrossRef
62.
go back to reference Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, Wang Y, Sheikh KL, Terry S, Tagawa ST et al (2011) Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 1:487–495CrossRef Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, Wang Y, Sheikh KL, Terry S, Tagawa ST et al (2011) Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 1:487–495CrossRef
63.
go back to reference Drier Y, Lawrence MS, Carter SL, Stewart C, Gabriel SB, Lander ES, Meyerson M, Beroukhim R, Getz G (2013) Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res 23:228–235CrossRef Drier Y, Lawrence MS, Carter SL, Stewart C, Gabriel SB, Lander ES, Meyerson M, Beroukhim R, Getz G (2013) Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res 23:228–235CrossRef
64.
go back to reference Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, Cyanam D, Nair S, Fuqua SA, Polyak K et al (2013) RNA sequencing of cancer reveals novel splicing alterations. Sci Rep 3:1689CrossRef Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, Cyanam D, Nair S, Fuqua SA, Polyak K et al (2013) RNA sequencing of cancer reveals novel splicing alterations. Sci Rep 3:1689CrossRef
65.
go back to reference Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339CrossRef Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339CrossRef
66.
go back to reference Wu X, Cao W, Wang X, Zhang J, Lv Z, Qin X, Wu Y, Chen W (2013) TGM3, a candidate tumor suppressor gene, contributes to human head and neck cancer. Mol Cancer 12:151CrossRef Wu X, Cao W, Wang X, Zhang J, Lv Z, Qin X, Wu Y, Chen W (2013) TGM3, a candidate tumor suppressor gene, contributes to human head and neck cancer. Mol Cancer 12:151CrossRef
67.
go back to reference Merid SK, Goranskaya D, Alexeyenko A (2014) Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis. BMC Bioinform 15:308CrossRef Merid SK, Goranskaya D, Alexeyenko A (2014) Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis. BMC Bioinform 15:308CrossRef
68.
go back to reference Layer RM, Chiang C, Quinlan AR, Hall IM (2014) LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15:R84CrossRef Layer RM, Chiang C, Quinlan AR, Hall IM (2014) LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15:R84CrossRef
69.
go back to reference Dietlein F, Eschner W (2014) Inferring primary tumor sites from mutation spectra: a meta-analysis of histology-specific aberrations in cancer-derived cell lines. Hum Mol Genet 23:1527–1537CrossRef Dietlein F, Eschner W (2014) Inferring primary tumor sites from mutation spectra: a meta-analysis of histology-specific aberrations in cancer-derived cell lines. Hum Mol Genet 23:1527–1537CrossRef
70.
go back to reference Cole C, Krampis K, Karagiannis K, Almeida JS, Faison WJ, Motwani M, Wan Q, Golikov A, Pan Y, Simonyan V, Mazumder R (2014) Non-synonymous variations in cancer and their effects on the human proteome: workflow for NGS data biocuration and proteome-wide analysis of TCGA data. BMC Bioinform 15:28CrossRef Cole C, Krampis K, Karagiannis K, Almeida JS, Faison WJ, Motwani M, Wan Q, Golikov A, Pan Y, Simonyan V, Mazumder R (2014) Non-synonymous variations in cancer and their effects on the human proteome: workflow for NGS data biocuration and proteome-wide analysis of TCGA data. BMC Bioinform 15:28CrossRef
71.
go back to reference Wittler R (2013) Unraveling overlapping deletions by agglomerative clustering. BMC Genom 14(Suppl 1):S12CrossRef Wittler R (2013) Unraveling overlapping deletions by agglomerative clustering. BMC Genom 14(Suppl 1):S12CrossRef
72.
go back to reference Trifonov V, Pasqualucci L, Dalla Favera R, Rabadan R (2013) MutComFocal: an integrative approach to identifying recurrent and focal genomic alterations in tumor samples. BMC Syst Biol 7:25CrossRef Trifonov V, Pasqualucci L, Dalla Favera R, Rabadan R (2013) MutComFocal: an integrative approach to identifying recurrent and focal genomic alterations in tumor samples. BMC Syst Biol 7:25CrossRef
73.
go back to reference Oesper L, Mahmoody A, Raphael BJ (2013) THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data. Genome Biol 14:R80CrossRef Oesper L, Mahmoody A, Raphael BJ (2013) THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data. Genome Biol 14:R80CrossRef
74.
go back to reference Hansen NF, Gartner JJ, Mei L, Samuels Y, Mullikin JC (2013) Shimmer: detection of genetic alterations in tumors using next-generation sequence data. Bioinformatics 29:1498–1503CrossRef Hansen NF, Gartner JJ, Mei L, Samuels Y, Mullikin JC (2013) Shimmer: detection of genetic alterations in tumors using next-generation sequence data. Bioinformatics 29:1498–1503CrossRef
75.
go back to reference Hamilton MP, Rajapakshe K, Hartig SM, Reva B, McLellan MD, Kandoth C, Ding L, Zack TI, Gunaratne PH, Wheeler DA et al (2013) Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat Commun 4:2730CrossRef Hamilton MP, Rajapakshe K, Hartig SM, Reva B, McLellan MD, Kandoth C, Ding L, Zack TI, Gunaratne PH, Wheeler DA et al (2013) Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat Commun 4:2730CrossRef
76.
go back to reference Chen Y, Yao H, Thompson EJ, Tannir NM, Weinstein JN, Su X (2013) VirusSeq: software to identify viruses and their integration sites using next-generation sequencing of human cancer tissue. Bioinformatics 29:266–267CrossRef Chen Y, Yao H, Thompson EJ, Tannir NM, Weinstein JN, Su X (2013) VirusSeq: software to identify viruses and their integration sites using next-generation sequencing of human cancer tissue. Bioinformatics 29:266–267CrossRef
77.
go back to reference Mosen-Ansorena D, Telleria N, Veganzones S, De la Orden V, Maestro ML, Aransay AM (2014) seqCNA: an R package for DNA copy number analysis in cancer using high-throughput sequencing. BMC Genom 15:178CrossRef Mosen-Ansorena D, Telleria N, Veganzones S, De la Orden V, Maestro ML, Aransay AM (2014) seqCNA: an R package for DNA copy number analysis in cancer using high-throughput sequencing. BMC Genom 15:178CrossRef
78.
go back to reference Li Y, Xie X (2014) Deconvolving tumor purity and ploidy by integrating copy number alterations and loss of heterozygosity. Bioinformatics 30:2121–2129CrossRef Li Y, Xie X (2014) Deconvolving tumor purity and ploidy by integrating copy number alterations and loss of heterozygosity. Bioinformatics 30:2121–2129CrossRef
79.
go back to reference Kendall J, Krasnitz A (2014) Computational methods for DNA copy-number analysis of tumors. Methods Mol Biol 1176:243–259CrossRef Kendall J, Krasnitz A (2014) Computational methods for DNA copy-number analysis of tumors. Methods Mol Biol 1176:243–259CrossRef
80.
go back to reference Krishnan NM, Gaur P, Chaudhary R, Rao AA, Panda B (2012) COPS: a sensitive and accurate tool for detecting somatic Copy Number Alterations using short-read sequence data from paired samples. PLoS ONE 7:e47812CrossRef Krishnan NM, Gaur P, Chaudhary R, Rao AA, Panda B (2012) COPS: a sensitive and accurate tool for detecting somatic Copy Number Alterations using short-read sequence data from paired samples. PLoS ONE 7:e47812CrossRef
81.
go back to reference Van Allen EM, Wagle N, Levy MA (2013) Clinical analysis and interpretation of cancer genome data. J Clin Oncol 31:1825–1833CrossRef Van Allen EM, Wagle N, Levy MA (2013) Clinical analysis and interpretation of cancer genome data. J Clin Oncol 31:1825–1833CrossRef
82.
go back to reference Lahti L, Schafer M, Klein HU, Bicciato S, Dugas M (2013) Cancer gene prioritization by integrative analysis of mRNA expression and DNA copy number data: a comparative review. Brief Bioinform 14:27–35CrossRef Lahti L, Schafer M, Klein HU, Bicciato S, Dugas M (2013) Cancer gene prioritization by integrative analysis of mRNA expression and DNA copy number data: a comparative review. Brief Bioinform 14:27–35CrossRef
83.
go back to reference Lee LA, Arvai KJ, Jones D (2015) Annotation of sequence variants in cancer samples: processes and pitfalls for routine assays in the clinical laboratory. J Mol Diagn Lee LA, Arvai KJ, Jones D (2015) Annotation of sequence variants in cancer samples: processes and pitfalls for routine assays in the clinical laboratory. J Mol Diagn
84.
go back to reference Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The cancer genome Atlas Pan-cancer analysis project. Nat Genet 45:1113–1120CrossRef Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The cancer genome Atlas Pan-cancer analysis project. Nat Genet 45:1113–1120CrossRef
85.
go back to reference Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhang CZ, Wala J, Mermel CH et al (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140CrossRef Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhang CZ, Wala J, Mermel CH et al (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140CrossRef
86.
go back to reference Gross AM, Orosco RK, Shen JP, Egloff AM, Carter H, Hofree M, Choueiri M, Coffey CS, Lippman SM, Hayes DN et al (2014) Multi-tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p loss. Nat Genet 46:939–943CrossRef Gross AM, Orosco RK, Shen JP, Egloff AM, Carter H, Hofree M, Choueiri M, Coffey CS, Lippman SM, Hayes DN et al (2014) Multi-tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p loss. Nat Genet 46:939–943CrossRef
87.
go back to reference Pan-cancer initiative finds patterns of drivers (2013) Cancer Discov 3:1320 Pan-cancer initiative finds patterns of drivers (2013) Cancer Discov 3:1320
89.
go back to reference Russnes HG, Navin N, Hicks J, Borresen-Dale AL (2011) Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest 121:3810–3818CrossRef Russnes HG, Navin N, Hicks J, Borresen-Dale AL (2011) Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Invest 121:3810–3818CrossRef
90.
go back to reference Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892CrossRef Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892CrossRef
91.
go back to reference Swanton C (2012) Intratumor heterogeneity: evolution through space and time. Cancer Res 72:4875–4882CrossRef Swanton C (2012) Intratumor heterogeneity: evolution through space and time. Cancer Res 72:4875–4882CrossRef
92.
go back to reference Oesper L, Satas G, Raphael BJ (2014) Quantifying tumor heterogeneity in whole-genome and whole-exome sequencing data. Bioinformatics 30:3532–3540CrossRef Oesper L, Satas G, Raphael BJ (2014) Quantifying tumor heterogeneity in whole-genome and whole-exome sequencing data. Bioinformatics 30:3532–3540CrossRef
93.
go back to reference Hajirasouliha I, Mahmoody A, Raphael BJ (2014) A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data. Bioinformatics 30:i78–i86CrossRef Hajirasouliha I, Mahmoody A, Raphael BJ (2014) A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data. Bioinformatics 30:i78–i86CrossRef
94.
go back to reference Jun G, Flickinger M, Hetrick KN, Romm JM, Doheny KF, Abecasis GR, Boehnke M, Kang HM (2012) Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am J Hum Genet 91:839–848CrossRef Jun G, Flickinger M, Hetrick KN, Romm JM, Doheny KF, Abecasis GR, Boehnke M, Kang HM (2012) Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am J Hum Genet 91:839–848CrossRef
95.
go back to reference Navin N, Hicks J (2011) Future medical applications of single-cell sequencing in cancer. Genome Med 3:31CrossRef Navin N, Hicks J (2011) Future medical applications of single-cell sequencing in cancer. Genome Med 3:31CrossRef
96.
go back to reference Ji C, Miao Z, He X (2015) A simple strategy for reducing false negatives in calling variants from single-cell sequencing data. PLoS ONE 10:e0123789CrossRef Ji C, Miao Z, He X (2015) A simple strategy for reducing false negatives in calling variants from single-cell sequencing data. PLoS ONE 10:e0123789CrossRef
97.
go back to reference Yu C, Yu J, Yao X, Wu WK, Lu Y, Tang S, Li X, Bao L, Li X, Hou Y et al (2014) Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res 24:701–712CrossRef Yu C, Yu J, Yao X, Wu WK, Lu Y, Tang S, Li X, Bao L, Li X, Hou Y et al (2014) Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res 24:701–712CrossRef
98.
go back to reference Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, Aceto N, Bersani F, Brannigan BW, Xega K et al (2014) Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 8:1905–1918 Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, Aceto N, Bersani F, Brannigan BW, Xega K et al (2014) Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 8:1905–1918
99.
go back to reference Kim KI, Simon R (2014) Using single cell sequencing data to model the evolutionary history of a tumor. BMC Bioinform 15:27CrossRef Kim KI, Simon R (2014) Using single cell sequencing data to model the evolutionary history of a tumor. BMC Bioinform 15:27CrossRef
100.
go back to reference Xu Y, Hu H, Zheng J, Li B (2013) Feasibility of whole RNA sequencing from single-cell mRNA amplification. Genet Res Int 2013:724124 Xu Y, Hu H, Zheng J, Li B (2013) Feasibility of whole RNA sequencing from single-cell mRNA amplification. Genet Res Int 2013:724124
101.
go back to reference Voet T, Kumar P, Van Loo P, Cooke SL, Marshall J, Lin ML, Zamani Esteki M, Van der Aa N, Mateiu L, McBride DJ et al (2013) Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res 41:6119–6138CrossRef Voet T, Kumar P, Van Loo P, Cooke SL, Marshall J, Lin ML, Zamani Esteki M, Van der Aa N, Mateiu L, McBride DJ et al (2013) Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res 41:6119–6138CrossRef
102.
go back to reference Korfhage C, Fisch E, Fricke E, Baedker S, Loeffert D (2013) Whole-genome amplification of single-cell genomes for next-generation sequencing. Curr Protoc Mol Biol 104:Unit 7–14 Korfhage C, Fisch E, Fricke E, Baedker S, Loeffert D (2013) Whole-genome amplification of single-cell genomes for next-generation sequencing. Curr Protoc Mol Biol 104:Unit 7–14
103.
go back to reference Geurts-Giele WR, Dirkx-van der Velden AW, Bartalits NM, Verhoog LC, Hanselaar WE, Dinjens WN (2013) Molecular diagnostics of a single multifocal non-small cell lung cancer case using targeted next generation sequencing. Virchows Arch 462:249–254 Geurts-Giele WR, Dirkx-van der Velden AW, Bartalits NM, Verhoog LC, Hanselaar WE, Dinjens WN (2013) Molecular diagnostics of a single multifocal non-small cell lung cancer case using targeted next generation sequencing. Virchows Arch 462:249–254
104.
go back to reference Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:886–895CrossRef Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:886–895CrossRef
105.
go back to reference Li Y, Xu X, Song L, Hou Y, Li Z, Tsang S, Li F, Im KM, Wu K, Wu H et al (2012) Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. Gigascience 1:12CrossRef Li Y, Xu X, Song L, Hou Y, Li Z, Tsang S, Li F, Im KM, Wu K, Wu H et al (2012) Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. Gigascience 1:12CrossRef
106.
go back to reference Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885CrossRef Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885CrossRef
107.
go back to reference Novak R, Zeng Y, Shuga J, Venugopalan G, Fletcher DA, Smith MT, Mathies RA (2011) Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions. Angew Chem Int Ed Engl 50:390–395CrossRef Novak R, Zeng Y, Shuga J, Venugopalan G, Fletcher DA, Smith MT, Mathies RA (2011) Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions. Angew Chem Int Ed Engl 50:390–395CrossRef
108.
go back to reference Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94CrossRef Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94CrossRef
109.
go back to reference Lasken RS (2013) Single-cell sequencing in its prime. Nat Biotechnol 31:211–212CrossRef Lasken RS (2013) Single-cell sequencing in its prime. Nat Biotechnol 31:211–212CrossRef
111.
go back to reference Panda B (2012) Whither genomic diagnostics tests in India? Indian J Med Paediatr Oncol 33:250–252CrossRef Panda B (2012) Whither genomic diagnostics tests in India? Indian J Med Paediatr Oncol 33:250–252CrossRef
112.
go back to reference Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG et al (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–384CrossRef Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG et al (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–384CrossRef
113.
go back to reference Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, Joshi NS, Subbaraj L, Bronson RT, Xue W, Jacks T (2014) Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516:428–431CrossRef Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, Joshi NS, Subbaraj L, Bronson RT, Xue W, Jacks T (2014) Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516:428–431CrossRef
114.
go back to reference Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21:256–262 Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21:256–262
115.
go back to reference Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R et al (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246–1260CrossRef Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R et al (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246–1260CrossRef
Metadata
Title
Big Data and Cancer Research
Author
Binay Panda
Copyright Year
2016
Publisher
Springer India
DOI
https://doi.org/10.1007/978-81-322-3628-3_14

Premium Partner