Skip to main content
Top

2020 | OriginalPaper | Chapter

Big Data Security Challenges and Preventive Solutions

Authors : Nirmal Kumar Gupta, Mukesh Kumar Rohil

Published in: Data Management, Analytics and Innovation

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Big data has opened the possibility of making great advancements in many scientific disciplines and has become a very interesting topic in academic world and in industry. It has also given contributions to innovation, improvements in productivity and competitiveness. However, at present, there are various security risks involved in the process of collection, storage and use. The leakage of privacy caused by big data poses serious problems for the users; also the incorrect or false big data may lead to wrong or invalid analysis of results. The presented work analyzes the technical challenges of implementing big data security and privacy protection, and describes some key solutions to address the issues related with big data security and privacy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xia, F., Yang, L.T., Wang, L., Vinel, A.: Internet of things. Int. J. Commun. Syst. 25(9), 1101–1102 (2012)CrossRef Xia, F., Yang, L.T., Wang, L., Vinel, A.: Internet of things. Int. J. Commun. Syst. 25(9), 1101–1102 (2012)CrossRef
3.
go back to reference Lee, I.: Big data: dimensions, evolution, impacts, and challenges. Bus. Horiz. 60(3), 293–303 (2017)CrossRef Lee, I.: Big data: dimensions, evolution, impacts, and challenges. Bus. Horiz. 60(3), 293–303 (2017)CrossRef
4.
go back to reference Nguyen, B., Simkin, L.: The Internet of Things (IoT) and marketing: the state of play, future trends and the implications for marketing. J. Mark. Manage. 33(1–2), 1–6 (2017) CrossRef Nguyen, B., Simkin, L.: The Internet of Things (IoT) and marketing: the state of play, future trends and the implications for marketing. J. Mark. Manage. 33(1–2), 1–6 (2017) CrossRef
5.
go back to reference Boyd, D., Crawford, K.: Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 15(5), 662–679 (2012)CrossRef Boyd, D., Crawford, K.: Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 15(5), 662–679 (2012)CrossRef
6.
go back to reference Guo-Jie, L., Xue-Qi, C.: Research status and scientific thinking of big data. Bull. Chin. Acad. Sci. 27(6), 647–657 (2012) Guo-Jie, L., Xue-Qi, C.: Research status and scientific thinking of big data. Bull. Chin. Acad. Sci. 27(6), 647–657 (2012)
7.
go back to reference Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)CrossRef Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)CrossRef
8.
go back to reference Arias, M., Arratia, A., Xuriguera, R.: Forecasting with twitter data. ACM Trans. Intell. Syst. Technol. 5(1), 8 (2013)CrossRef Arias, M., Arratia, A., Xuriguera, R.: Forecasting with twitter data. ACM Trans. Intell. Syst. Technol. 5(1), 8 (2013)CrossRef
9.
go back to reference Arasu, A., Chaudhuri, S., Chen, Z., Ganjam, K.: Experiences with using data cleaning technology for bing services. IEEE Data Eng. Bull. 35(2), 14–23 (2012) Arasu, A., Chaudhuri, S., Chen, Z., Ganjam, K.: Experiences with using data cleaning technology for bing services. IEEE Data Eng. Bull. 35(2), 14–23 (2012)
10.
go back to reference Sarma, A.D., Dong, X.L., Halevy, A.: Data integration with dependent sources. In: Proceedings of the 14th International Conference on Extending Database Technology, ACM, pp. 401–412 (2011) Sarma, A.D., Dong, X.L., Halevy, A.: Data integration with dependent sources. In: Proceedings of the 14th International Conference on Extending Database Technology, ACM, pp. 401–412 (2011)
11.
go back to reference Elomari, A., Maizate, A., Hassouni, L.: Data storage in big data context: a survey. In: International Conference on Systems of Collaboration (SysCo), pp. 1–4. IEEE (2016) Elomari, A., Maizate, A., Hassouni, L.: Data storage in big data context: a survey. In: International Conference on Systems of Collaboration (SysCo), pp. 1–4. IEEE (2016)
12.
go back to reference Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRef Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRef
13.
go back to reference Verma, A., Cherkasova, L., Kumar, V.S., Campbell, R.H.: Deadline-based workload management for mapreduce environments: pieces of the performance puzzle. In: Network Operations and Management Symposium (NOMS), pp. 900–905, IEEE (2012) Verma, A., Cherkasova, L., Kumar, V.S., Campbell, R.H.: Deadline-based workload management for mapreduce environments: pieces of the performance puzzle. In: Network Operations and Management Symposium (NOMS), pp. 900–905, IEEE (2012)
14.
go back to reference Dede, E., Fadika, Z., Hartog, J., Govindaraju, M., Ramakrishnan, L., Gunter, D., Canon, R.: Marissa: Mapreduce implementation for streaming science applications. In: IEEE 8th International Conference on E-Science (e-Science), 2012, pp. 1–8, IEEE (2012) Dede, E., Fadika, Z., Hartog, J., Govindaraju, M., Ramakrishnan, L., Gunter, D., Canon, R.: Marissa: Mapreduce implementation for streaming science applications. In: IEEE 8th International Conference on E-Science (e-Science), 2012, pp. 1–8, IEEE (2012)
15.
go back to reference Guo, S., Xiong, J., Wang, W., Lee, R.: Mastiff: a mapreduce-based system for time-based big data analytics. In: IEEE International Conference on Cluster Computing (CLUSTER), 2012, pp. 72–80, IEEE (2012) Guo, S., Xiong, J., Wang, W., Lee, R.: Mastiff: a mapreduce-based system for time-based big data analytics. In: IEEE International Conference on Cluster Computing (CLUSTER), 2012, pp. 72–80, IEEE (2012)
16.
go back to reference Chandramouli, B., Goldstein, J., Duan, S.: Temporal analytics on big data for web advertising. In: IEEE 28th International Conference on Data Engineering, pp. 90–101. IEEE (2012) Chandramouli, B., Goldstein, J., Duan, S.: Temporal analytics on big data for web advertising. In: IEEE 28th International Conference on Data Engineering, pp. 90–101. IEEE (2012)
17.
go back to reference Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf. Sci. 275, 314–347 (2014)CrossRef Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf. Sci. 275, 314–347 (2014)CrossRef
18.
go back to reference Wang, Y., Lu, W., Wei, B.: Transactional multi-row access guarantee in the key-value store. In: IEEE International Conference on Cluster Computing (CLUSTER), 2012, pp. 572–575. IEEE (2012) Wang, Y., Lu, W., Wei, B.: Transactional multi-row access guarantee in the key-value store. In: IEEE International Conference on Cluster Computing (CLUSTER), 2012, pp. 572–575. IEEE (2012)
19.
go back to reference Hwang, M., Jeong, D.H., Jung, H., Sung, W.K., Shin, J., Kim, P.: A term normalization method for better performance of terminology construction. In: International Conference on Artificial Intelligence and Soft Computing, pp. 682–690. Springer, Berlin (2012)CrossRef Hwang, M., Jeong, D.H., Jung, H., Sung, W.K., Shin, J., Kim, P.: A term normalization method for better performance of terminology construction. In: International Conference on Artificial Intelligence and Soft Computing, pp. 682–690. Springer, Berlin (2012)CrossRef
20.
go back to reference Ketata, I., Mokadem, R., Morvan, F.: Biomedical resource discovery considering semantic heterogeneity in data grid environments. In Integrated Computing Technology, pp. 12–24. Springer, Berlin (2011) Ketata, I., Mokadem, R., Morvan, F.: Biomedical resource discovery considering semantic heterogeneity in data grid environments. In Integrated Computing Technology, pp. 12–24. Springer, Berlin (2011)
21.
go back to reference Kang, U., Chau, D.H., Faloutsos, C.: Pegasus: mining billion-scale graphs in the cloud. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5341–5344. IEEE (2012) Kang, U., Chau, D.H., Faloutsos, C.: Pegasus: mining billion-scale graphs in the cloud. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5341–5344. IEEE (2012)
22.
go back to reference Kola, A., More, H., Soderman, S., Gubanov, M.: Generating Unified Famous Objects (UFOs) from the classified object tables. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 4771–4773. IEEE (2017) Kola, A., More, H., Soderman, S., Gubanov, M.: Generating Unified Famous Objects (UFOs) from the classified object tables. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 4771–4773. IEEE (2017)
23.
go back to reference Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th International Conference on World Wide Web, pp. 287–297. International World Wide Web Conferences Steering Committee (2016) Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional data. In: Proceedings of the 25th International Conference on World Wide Web, pp. 287–297. International World Wide Web Conferences Steering Committee (2016)
24.
go back to reference Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)CrossRef Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)CrossRef
25.
go back to reference Meyer-Schönberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We Live, Work, and Think. Eamon Dolan, England (2013) Meyer-Schönberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We Live, Work, and Think. Eamon Dolan, England (2013)
26.
go back to reference Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manage. 35(2), 137–144 (2015)CrossRef Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manage. 35(2), 137–144 (2015)CrossRef
27.
go back to reference Yin, X., Tan, W.: Semi-supervised truth discovery. In: Proceedings of the 20th International Conference on World Wide Web, pp. 217–226. ACM (2011) Yin, X., Tan, W.: Semi-supervised truth discovery. In: Proceedings of the 20th International Conference on World Wide Web, pp. 217–226. ACM (2011)
28.
go back to reference Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Syst. 10(5), 557–570 (2002)MathSciNetCrossRef Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Syst. 10(5), 557–570 (2002)MathSciNetCrossRef
29.
go back to reference LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 49–60. ACM (2005) LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 49–60. ACM (2005)
30.
go back to reference Xiao, X., Taom, Y.: M-invariance: towards privacy preserving re-publication of dynamic datasets. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 689–700. ACM (2007) Xiao, X., Taom, Y.: M-invariance: towards privacy preserving re-publication of dynamic datasets. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 689–700. ACM (2007)
31.
go back to reference Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE Symposium on Security and Privacy, 2008. SP 2008, pp. 111–125. IEEE (2008) Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE Symposium on Security and Privacy, 2008. SP 2008, pp. 111–125. IEEE (2008)
32.
go back to reference Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach. In: Proceedings of the 2008 SIAM International Conference on Data Mining, pp. 739–750. Society for Industrial and Applied Mathematics (2008) Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach. In: Proceedings of the 2008 SIAM International Conference on Data Mining, pp. 739–750. Society for Industrial and Applied Mathematics (2008)
33.
go back to reference Zhang, L., Zhang, W.: Edge anonymity in social network graphs. In: International Conference on Computational Science and Engineering, 2009. CSE’09, vol. 4, pp. 1–8. IEEE (2009) Zhang, L., Zhang, W.: Edge anonymity in social network graphs. In: International Conference on Computational Science and Engineering, 2009. CSE’09, vol. 4, pp. 1–8. IEEE (2009)
34.
go back to reference Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking relational data: framework, algorithms and analysis. VLDB J. Int. J. Very Large Data Bases 12(2), 157–169 (2013) Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking relational data: framework, algorithms and analysis. VLDB J. Int. J. Very Large Data Bases 12(2), 157–169 (2013)
35.
go back to reference Sion, R., Atallah, M., Prabhakar, S.: On watermarking numeric sets. In: International Workshop on Digital Watermarking, pp. 130–146. Springer, Berlin (2002)CrossRef Sion, R., Atallah, M., Prabhakar, S.: On watermarking numeric sets. In: International Workshop on Digital Watermarking, pp. 130–146. Springer, Berlin (2002)CrossRef
36.
go back to reference Guo, F., Wang, J., Li, D.: Fingerprinting relational databases. In: Proceedings of the 2006 ACM Symposium on Applied Computing, pp. 487–492. ACM (2006) Guo, F., Wang, J., Li, D.: Fingerprinting relational databases. In: Proceedings of the 2006 ACM Symposium on Applied Computing, pp. 487–492. ACM (2006)
37.
go back to reference Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology for the semantic web and its applications. In: Working Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, vol. 28, pp. 7–10 (2002) Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology for the semantic web and its applications. In: Working Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, vol. 28, pp. 7–10 (2002)
38.
go back to reference Atallah, M.J., Raskin, V., Hempelmann, C.F., Karahan, M., Sion, R., Topkara, U., Triezenberg, K.E.: Natural language watermarking and tamperproofing. In: International Workshop on Information Hiding, pp. 196–212. Springer, Berlin (2002) Atallah, M.J., Raskin, V., Hempelmann, C.F., Karahan, M., Sion, R., Topkara, U., Triezenberg, K.E.: Natural language watermarking and tamperproofing. In: International Workshop on Information Hiding, pp. 196–212. Springer, Berlin (2002)
39.
go back to reference Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment. ACM Trans. Database Syst. 25(2), 179–227 (2000)CrossRef Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment. ACM Trans. Database Syst. 25(2), 179–227 (2000)CrossRef
40.
go back to reference Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-aware storage systems. In: USENIX Annual Technical Conference, General Track, pp. 43–56 (2006) Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-aware storage systems. In: USENIX Annual Technical Conference, General Track, pp. 43–56 (2006)
Metadata
Title
Big Data Security Challenges and Preventive Solutions
Authors
Nirmal Kumar Gupta
Mukesh Kumar Rohil
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9949-8_21