Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: International Journal of Data Science and Analytics 1/2022

09-11-2021 | Regular Paper

Big social data provenance framework for Zero-Information Loss Key-Value Pair (KVP) Database

Authors: Asma Rani, Navneet Goyal, Shashi K. Gadia

Published in: International Journal of Data Science and Analytics | Issue 1/2022

Login to get access
share
SHARE

Abstract

Social media has been playing a vital importance in information sharing at massive scale due to its easy access, low cost, and faster dissemination of information. Its competence to disseminate the information across a wide audience has raised a critical challenge to determine the social data provenance of digital content. Social Data Provenance describes the origin, derivation process, and transformations of social content throughout its lifecycle. In this paper, we present a Big Social Data Provenance (BSDP) Framework for key-value pair (KVP) database using the novel concept of Zero-Information Loss Database (ZILD). In our proposed framework, a huge volume of social data is first fetched from the social media (Twitter’s Network) through live streaming and simultaneously modelled in a KVP database by using a query-driven approach. The proposed framework is capable in capturing, storing, and querying provenance information for different query sets including select, aggregate, standing/historical, and data update (i.e., insert, delete, update) queries on Big Social Data. We evaluate the performance of proposed framework in terms of provenance capturing overhead for different query sets including select, aggregate, and data update queries, and average execution time for various provenance queries.
Literature
1.
go back to reference Agrawal, R., Imran, A., Seay, C., Walker, J.: A layer based architecture for provenance in big data. In: 2014 IEEE International Conference on Big Data (Big Data), pp.1–7. IEEE (2014) Agrawal, R., Imran, A., Seay, C., Walker, J.: A layer based architecture for provenance in big data. In: 2014 IEEE International Conference on Big Data (Big Data), pp.1–7. IEEE (2014)
2.
go back to reference Akoush, S., Sohan, R., Hopper, A.: Hadoopprov: towards provenance as a first class citizen in mapreduce. In: Presented as Part of the 5th \(\{\)USENIX \(\}\) Workshop on the Theory and Practice of Provenance (2013) Akoush, S., Sohan, R., Hopper, A.: Hadoopprov: towards provenance as a first class citizen in mapreduce. In: Presented as Part of the 5th \(\{\)USENIX \(\}\) Workshop on the Theory and Practice of Provenance (2013)
3.
go back to reference Barbier, G., Feng, Z., Gundecha, P., Liu, H.: Provenance data in social media. In: Provenance Data in Social Media (2013) Barbier, G., Feng, Z., Gundecha, P., Liu, H.: Provenance data in social media. In: Provenance Data in Social Media (2013)
4.
go back to reference Bhargava, G., Gadia, S.K.: Relational database systems with zero information loss. IEEE Trans. Knowl. Data Eng. 5(1), 76–87 (1993) CrossRef Bhargava, G., Gadia, S.K.: Relational database systems with zero information loss. IEEE Trans. Knowl. Data Eng. 5(1), 76–87 (1993) CrossRef
5.
go back to reference Cao, L.: Data science: nature and pitfalls. IEEE Intell. Syst. 31(5), 66–75 (2016) CrossRef Cao, L.: Data science: nature and pitfalls. IEEE Intell. Syst. 31(5), 66–75 (2016) CrossRef
6.
go back to reference Cao, L.: Data science: a comprehensive overview. ACM Comput. Surv. (CSUR) 50(3), 1–42 (2017) CrossRef Cao, L.: Data science: a comprehensive overview. ACM Comput. Surv. (CSUR) 50(3), 1–42 (2017) CrossRef
7.
go back to reference Chacko, A., Kumar, S.M.: Big data provenance research directions. In: TENCON 2017-2017 IEEE Region 10 Conference, pp. 651–656. IEEE (2017) Chacko, A., Kumar, S.M.: Big data provenance research directions. In: TENCON 2017-2017 IEEE Region 10 Conference, pp. 651–656. IEEE (2017)
8.
go back to reference Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 1–26 (2008) CrossRef Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 1–26 (2008) CrossRef
9.
go back to reference Che, D., Safran, M., Peng, Z.: From big data to big data mining: challenges, issues, and opportunities. In: International Conference on Database Systems for Advanced Applications, pp. 1–15. Springer (2013) Che, D., Safran, M., Peng, Z.: From big data to big data mining: challenges, issues, and opportunities. In: International Conference on Database Systems for Advanced Applications, pp. 1–15. Springer (2013)
10.
go back to reference Cheah, Y.W., Canon, R., Plale, B., Ramakrishnan, L.: Milieu: lightweight and configurable big data provenance for science. In: 2013 IEEE International Congress on Big Data, pp. 46–53. IEEE (2013) Cheah, Y.W., Canon, R., Plale, B., Ramakrishnan, L.: Milieu: lightweight and configurable big data provenance for science. In: 2013 IEEE International Congress on Big Data, pp. 46–53. IEEE (2013)
11.
go back to reference Chebotko, A., Kashlev, A., Lu, S.: A big data modeling methodology for apache cassandra. In: 2015 IEEE International Congress on Big Data, pp. 238–245. IEEE (2015) Chebotko, A., Kashlev, A., Lu, S.: A big data modeling methodology for apache cassandra. In: 2015 IEEE International Congress on Big Data, pp. 238–245. IEEE (2015)
12.
go back to reference Corsar, D., Markovic, M., Edwards, P.: Social media data in research: provenance challenges. In: International Provenance and Annotation Workshop, pp. 195–198. Springer (2016) Corsar, D., Markovic, M., Edwards, P.: Social media data in research: provenance challenges. In: International Provenance and Annotation Workshop, pp. 195–198. Springer (2016)
13.
go back to reference Crawl, D., Wang, J., Altintas, I.: Provenance for mapreduce-based data-intensive workflows. In: Proceedings of the 6th Workshop on Workflows in Support of Large-scale Science, pp. 21–30 (2011) Crawl, D., Wang, J., Altintas, I.: Provenance for mapreduce-based data-intensive workflows. In: Proceedings of the 6th Workshop on Workflows in Support of Large-scale Science, pp. 21–30 (2011)
14.
go back to reference Cuzzocrea, A.: Provenance research issues and challenges in the big data era. In: 2015 IEEE 39th Annual Computer Software and Applications Conference, vol. 3, pp. 684–686. IEEE (2015) Cuzzocrea, A.: Provenance research issues and challenges in the big data era. In: 2015 IEEE 39th Annual Computer Software and Applications Conference, vol. 3, pp. 684–686. IEEE (2015)
15.
go back to reference Cuzzocrea, A.M.: Big data provenance: State-of-the-art analysis and emerging research challenges. In: Workshops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT 2016, CEUR-WS, vol. 1558 (2016) Cuzzocrea, A.M.: Big data provenance: State-of-the-art analysis and emerging research challenges. In: Workshops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT 2016, CEUR-WS, vol. 1558 (2016)
16.
go back to reference De Nies, T., Taxidou, I., Dimou, A., Verborgh, R., Fischer, P.M., Mannens, E., Van de, Walle, R.: Towards multi-level provenance reconstruction of information diffusion on social media. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1823–1826 (2015) De Nies, T., Taxidou, I., Dimou, A., Verborgh, R., Fischer, P.M., Mannens, E., Van de, Walle, R.: Towards multi-level provenance reconstruction of information diffusion on social media. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1823–1826 (2015)
17.
go back to reference DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007) DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)
18.
go back to reference Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M., Tavakkoli-Moghaddam, R.: The social engineering optimizer (seo). Eng. Appl. Artif. Intell. 72, 267–293 (2018) CrossRef Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M., Tavakkoli-Moghaddam, R.: The social engineering optimizer (seo). Eng. Appl. Artif. Intell. 72, 267–293 (2018) CrossRef
19.
go back to reference Fathollahi-Fard, A.M., Ranjbar-Bourani, M., Cheikhrouhou, N., Hajiaghaei-Keshteli, M.: Novel modifications of social engineering optimizer to solve a truck scheduling problem in a cross-docking system. Comput. Ind. Eng. 137, 106103 (2019) CrossRef Fathollahi-Fard, A.M., Ranjbar-Bourani, M., Cheikhrouhou, N., Hajiaghaei-Keshteli, M.: Novel modifications of social engineering optimizer to solve a truck scheduling problem in a cross-docking system. Comput. Ind. Eng. 137, 106103 (2019) CrossRef
20.
go back to reference Featherston, D.: Cassandra: Principles and Application. Department of Computer Science University of Illinois at Urbana-champaign (2010) Featherston, D.: Cassandra: Principles and Application. Department of Computer Science University of Illinois at Urbana-champaign (2010)
21.
go back to reference Feng, Z., Gundecha, P., Liu, H.: Social Provenance, pp. 2768–2772. Springer, New York (2018) Feng, Z., Gundecha, P., Liu, H.: Social Provenance, pp. 2768–2772. Springer, New York (2018)
22.
go back to reference Ghoshal, D., Plale, B.: Provenance from log files: a bigdata problem. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops, pp. 290–297 (2013) Ghoshal, D., Plale, B.: Provenance from log files: a bigdata problem. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops, pp. 290–297 (2013)
23.
go back to reference Glavic, B.: Big data provenance: challenges and implications for benchmarking. In: Specifying Big Data Benchmarks, pp. 72–80. Springer (2012) Glavic, B.: Big data provenance: challenges and implications for benchmarking. In: Specifying Big Data Benchmarks, pp. 72–80. Springer (2012)
24.
go back to reference Glavic, B., Miller, R.J.: Reexamining some holy grails of data provenance. TaPP 11:3rd(2011) Glavic, B., Miller, R.J.: Reexamining some holy grails of data provenance. TaPP 11:3rd(2011)
25.
go back to reference Gundecha, P., Feng, Z., Liu, H.: Seeking provenance of information using social media. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 1691–1696 (2013) Gundecha, P., Feng, Z., Liu, H.: Seeking provenance of information using social media. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 1691–1696 (2013)
26.
go back to reference Hernandez, R., Becerra, Y., Torres, J., Ayguadé, E.: Automatic query driven data modelling in cassandra. Procedia Comput. Sci. 51, 2822–2826 (2015) CrossRef Hernandez, R., Becerra, Y., Torres, J., Ayguadé, E.: Automatic query driven data modelling in cassandra. Procedia Comput. Sci. 51, 2822–2826 (2015) CrossRef
27.
go back to reference Hondo, F., Wercelens, P., da Silva, W., Castro, K., Santana, I., Walter, M.E., Araújo, A., Holanda, M., Lifschitz, S.: Data provenance management for bioinformatics workflows using nosql database systems in a cloud computing environment. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1929–1934. IEEE (2017) Hondo, F., Wercelens, P., da Silva, W., Castro, K., Santana, I., Walter, M.E., Araújo, A., Holanda, M., Lifschitz, S.: Data provenance management for bioinformatics workflows using nosql database systems in a cloud computing environment. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1929–1934. IEEE (2017)
28.
go back to reference Ikeda, R., Park, H., Widom, J.: Provenance for generalized map and reduce workflows (2011) Ikeda, R., Park, H., Widom, J.: Provenance for generalized map and reduce workflows (2011)
29.
go back to reference Kaplan, A.M., Haenlein, M.: Users of the world, unite! the challenges and opportunities of social media. Bus. Horizons 53(1), 59–68 (2010) CrossRef Kaplan, A.M., Haenlein, M.: Users of the world, unite! the challenges and opportunities of social media. Bus. Horizons 53(1), 59–68 (2010) CrossRef
30.
go back to reference Kerchner, D., Littman, J., Peterson, C., Smallen, V., Trent, R., Wrubel, L.: The Provenance of a Tweet (2019) Kerchner, D., Littman, J., Peterson, C., Smallen, V., Trent, R., Wrubel, L.: The Provenance of a Tweet (2019)
31.
go back to reference Kulkarni, D.: A fine-grained access control model for key-value systems. In: Proceedings of the Third ACM Conference on Data and Application Security and Privacy, pp. 161–164 (2013a) Kulkarni, D.: A fine-grained access control model for key-value systems. In: Proceedings of the Third ACM Conference on Data and Application Security and Privacy, pp. 161–164 (2013a)
32.
go back to reference Kulkarni, D.: A provenance model for key-value systems. In: Presented as Part of the 5th \(\{\)USENIX \(\}\) Workshop on the Theory and Practice of Provenance (2013b) Kulkarni, D.: A provenance model for key-value systems. In: Presented as Part of the 5th \(\{\)USENIX \(\}\) Workshop on the Theory and Practice of Provenance (2013b)
33.
go back to reference Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010) CrossRef Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010) CrossRef
34.
35.
go back to reference Mahmood, K.: Performance comparison of nosql database cassandra and sql server for large databases. J. Independ. Stud. Res. (JISR) 14(2) (2016) Mahmood, K.: Performance comparison of nosql database cassandra and sql server for large databases. J. Independ. Stud. Res. (JISR) 14(2) (2016)
36.
go back to reference Markovic, M., Edwards, P., Corsar, D.: A role for provenance in social computation. In: Proceedings of the First International Workshop on Crowdsourcing the Semantic Web-CrowdSem 2013, CEUR-WS (2013) Markovic, M., Edwards, P., Corsar, D.: A role for provenance in social computation. In: Proceedings of the First International Workshop on Crowdsourcing the Semantic Web-CrowdSem 2013, CEUR-WS (2013)
37.
go back to reference Olshannikova, E., Olsson, T., Huhtamäki, J., Kärkkäinen, H.: Conceptualizing big social data. J. Big Data 4(1), 1–19 (2017) CrossRef Olshannikova, E., Olsson, T., Huhtamäki, J., Kärkkäinen, H.: Conceptualizing big social data. J. Big Data 4(1), 1–19 (2017) CrossRef
38.
go back to reference Papavasileiou, V., Yocum, K., Deutsch, A.: Ariadne: Online provenance for big graph analytics. In: Proceedings of the 2019 International Conference on Management of Data, pp. 521–536 (2019) Papavasileiou, V., Yocum, K., Deutsch, A.: Ariadne: Online provenance for big graph analytics. In: Proceedings of the 2019 International Conference on Management of Data, pp. 521–536 (2019)
39.
go back to reference Park, H., Ikeda, R., Widom, J.: Ramp: a system for capturing and tracing provenance in mapreduce workflows. Proc. VLDB Endow. 4(12), 1351–1354 (2011) CrossRef Park, H., Ikeda, R., Widom, J.: Ramp: a system for capturing and tracing provenance in mapreduce workflows. Proc. VLDB Endow. 4(12), 1351–1354 (2011) CrossRef
40.
go back to reference Ramesh, D., Kumar, A.: Query driven implementation of twitter base using cassandra. In: 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), pp. 1–4. IEEE (2018) Ramesh, D., Kumar, A.: Query driven implementation of twitter base using cassandra. In: 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), pp. 1–4. IEEE (2018)
41.
go back to reference Ramusat, Y., Maniu, S., Senellart, P.: Semiring provenance over graph databases. In: 10th \(\{\)USENIX \(\}\) Workshop on the Theory and Practice of Provenance (TaPP 2018) (2018) Ramusat, Y., Maniu, S., Senellart, P.: Semiring provenance over graph databases. In: 10th \(\{\)USENIX \(\}\) Workshop on the Theory and Practice of Provenance (TaPP 2018) (2018)
42.
go back to reference Ranganath, S., Gundecha, P., Liu, H.: A tool for assisting provenance search in social media. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 2517–2520 (2013) Ranganath, S., Gundecha, P., Liu, H.: A tool for assisting provenance search in social media. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 2517–2520 (2013)
43.
go back to reference Rani, A., Goyal, N., Gadia, S.K.: Data provenance for historical queries in relational database. In: Proceedings of the 8th Annual ACM India Conference, pp. 117–122 (2015) Rani, A., Goyal, N., Gadia, S.K.: Data provenance for historical queries in relational database. In: Proceedings of the 8th Annual ACM India Conference, pp. 117–122 (2015)
44.
go back to reference Rani, A., Goyal, N., Gadia, S.K.: Efficient multi-depth querying on provenance of relational queries using graph database. In: Proceedings of the 9th Annual ACM India Conference, pp. 11–20 (2016) Rani, A., Goyal, N., Gadia, S.K.: Efficient multi-depth querying on provenance of relational queries using graph database. In: Proceedings of the 9th Annual ACM India Conference, pp. 11–20 (2016)
45.
go back to reference Rani, A., Goyal, N., Gadia, S.K.: Twitter data modelling and provenance support for key-value pair databases. In: Qiao, M., Vossen, G., Wang, S., Li, L. (eds.) Databases Theory and Applications, pp. 87–98. Springer, Cham (2021a) CrossRef Rani, A., Goyal, N., Gadia, S.K.: Twitter data modelling and provenance support for key-value pair databases. In: Qiao, M., Vossen, G., Wang, S., Li, L. (eds.) Databases Theory and Applications, pp. 87–98. Springer, Cham (2021a) CrossRef
46.
go back to reference Rani, A., Goyal, N., K Gadia, S.: Provenance framework for twitter data using zero-information loss graph database. In: 8th ACM IKDD CODS and 26th COMAD, pp. 74–82 (2021b) Rani, A., Goyal, N., K Gadia, S.: Provenance framework for twitter data using zero-information loss graph database. In: 8th ACM IKDD CODS and 26th COMAD, pp. 74–82 (2021b)
47.
go back to reference Rodrigues, A.P., Chiplunkar, N.N.: Real-time twitter data analysis using hadoop ecosystem. Cogent Eng. 5(1), 1534519 (2018) CrossRef Rodrigues, A.P., Chiplunkar, N.N.: Real-time twitter data analysis using hadoop ecosystem. Cogent Eng. 5(1), 1534519 (2018) CrossRef
48.
go back to reference Schmidt, F.M., Geyer, C., Schaeffer-Filho, A., DeBloch, S., Hu, Y.: Change data capture in nosql databases: a functional and performance comparison. In: 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 562–567. IEEE (2015) Schmidt, F.M., Geyer, C., Schaeffer-Filho, A., DeBloch, S., Hu, Y.: Change data capture in nosql databases: a functional and performance comparison. In: 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 562–567. IEEE (2015)
49.
go back to reference Senellart, P.: Provenance in databases: principles and applications. In: Reasoning Web, Explainable Artificial Intelligence, pp. 104–109. Springer, Cham (2019) CrossRef Senellart, P.: Provenance in databases: principles and applications. In: Reasoning Web, Explainable Artificial Intelligence, pp. 104–109. Springer, Cham (2019) CrossRef
50.
go back to reference Simmhan, Y.L., Plale, B., Gannon, D.: A Survey of Data Provenance Techniques, vol. 47405, p. 69. Computer Science Department, Indiana University, Bloomington (2005) Simmhan, Y.L., Plale, B., Gannon, D.: A Survey of Data Provenance Techniques, vol. 47405, p. 69. Computer Science Department, Indiana University, Bloomington (2005)
51.
go back to reference Taxidou, I., De Nies, T., Verborgh, R., Fischer, P.M., Mannens, E., Van de, Walle, R.: Modeling information diffusion in social media as provenance with w3c prov. In: Proceedings of the 24th International Conference on World Wide Web, pp. 819–824 (2015) Taxidou, I., De Nies, T., Verborgh, R., Fischer, P.M., Mannens, E., Van de, Walle, R.: Modeling information diffusion in social media as provenance with w3c prov. In: Proceedings of the 24th International Conference on World Wide Web, pp. 819–824 (2015)
52.
go back to reference Taxidou, I., Lieber, S., Fischer, P.M., De Nies, T., Verborgh, R.: Web-scale provenance reconstruction of implicit information diffusion on social media. Distrib. Parallel Datab. 36(1), 47–79 (2018) CrossRef Taxidou, I., Lieber, S., Fischer, P.M., De Nies, T., Verborgh, R.: Web-scale provenance reconstruction of implicit information diffusion on social media. Distrib. Parallel Datab. 36(1), 47–79 (2018) CrossRef
53.
go back to reference Wang, J., Crawl, D., Purawat, S., Nguyen, M., Altintas, I.: Big data provenance: challenges, state of the art and opportunities. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 2509–2516. IEEE (2015) Wang, J., Crawl, D., Purawat, S., Nguyen, M., Altintas, I.: Big data provenance: challenges, state of the art and opportunities. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 2509–2516. IEEE (2015)
54.
go back to reference Yazici, I.M., Aktas, M.S., Gokturk, M.: A novel approach to user involved big data provenance visualization. DBKDA 2017, 19 (2017) Yazici, I.M., Aktas, M.S., Gokturk, M.: A novel approach to user involved big data provenance visualization. DBKDA 2017, 19 (2017)
55.
go back to reference Ye, Q., Lu, M.: s2p: provenance research for stream processing system. Appl. Sci. 11(12), 5523 (2021) CrossRef Ye, Q., Lu, M.: s2p: provenance research for stream processing system. Appl. Sci. 11(12), 5523 (2021) CrossRef
56.
go back to reference Zhang, C., Fathollahi-Fard, A.M., Li, J., Tian, G., Zhang, T.: Disassembly sequence planning for intelligent manufacturing using social engineering optimizer. Symmetry 13(4), 663 (2021) CrossRef Zhang, C., Fathollahi-Fard, A.M., Li, J., Tian, G., Zhang, T.: Disassembly sequence planning for intelligent manufacturing using social engineering optimizer. Symmetry 13(4), 663 (2021) CrossRef
Metadata
Title
Big social data provenance framework for Zero-Information Loss Key-Value Pair (KVP) Database
Authors
Asma Rani
Navneet Goyal
Shashi K. Gadia
Publication date
09-11-2021
Publisher
Springer International Publishing
Published in
International Journal of Data Science and Analytics / Issue 1/2022
Print ISSN: 2364-415X
Electronic ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-021-00287-9

Other articles of this Issue 1/2022

International Journal of Data Science and Analytics 1/2022 Go to the issue

Premium Partner