Skip to main content
Top
Published in: Dynamic Games and Applications 3/2020

02-01-2020

Bimatrix Replicator Dynamics with Periodic Impulses

Authors: Xinmiao An, Xiaomin Wang, Boyu Zhang

Published in: Dynamic Games and Applications | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates the bimatrix replicator dynamics with periodic impulses. In biological system, impulsive perturbations may due to the occurrence of an unfavorable physical environment, or due to the seasonal life history effects in the physiological and reproductive mechanisms of the population. We show that impulsive perturbations can lead to complicated dynamical behaviors. On the one hand, the system can have multiple \(\tau \)-periodic solutions, where the lower bound of the number of solutions is increasing linearly in the impulsive period \(\tau \). On the other hand, for shorter impulsive period, we provide a differential approximation for the impulsive dynamical system. By analyzing the resulting differential dynamics, we show that the interior equilibrium (which corresponds to a \(\tau \)-periodic solution) must be globally stable if it exists. Furthermore, when the impulsive effect is weak, all interior trajectories of the impulsive dynamics evolve to a small neighborhood of the interior equilibrium of the bimatrix replicator dynamics. In summary, longer impulsive period causes an increase in the complexity of the evolutionary process and shorter period promotes evolutionary stability of the interior equilibrium where multiple strategies can coexist.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Angelova J, Dishliev A (2000) Optimization problems for one-impulsive models from population dynamics. Nonlinear Anal 39:483–497MathSciNetMATH Angelova J, Dishliev A (2000) Optimization problems for one-impulsive models from population dynamics. Nonlinear Anal 39:483–497MathSciNetMATH
2.
go back to reference Bainov D, Simeonov P (1993) Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical, New YorkMATH Bainov D, Simeonov P (1993) Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical, New YorkMATH
3.
go back to reference Ballinger G, Liu X (1997) Permanence of population growth models with impulsive effects. Math Comput Modelling 26:59–72MathSciNetMATH Ballinger G, Liu X (1997) Permanence of population growth models with impulsive effects. Math Comput Modelling 26:59–72MathSciNetMATH
4.
go back to reference Binmore K, Samuelson L (2001) Can mixed strategies be stable in asymmetric games? J Theor Biol 210(1):1–14 Binmore K, Samuelson L (2001) Can mixed strategies be stable in asymmetric games? J Theor Biol 210(1):1–14
5.
go back to reference Broom M, Cannings C, Vickers GT (1997) A sequential-arrivals model of territory acquisition. J Theor Biol 189(3):257–272 Broom M, Cannings C, Vickers GT (1997) A sequential-arrivals model of territory acquisition. J Theor Biol 189(3):257–272
6.
go back to reference Broom M, Cannings C, Vickers GT (1999) Modelling dominance hierarchies using multi-player game theory. Ann Hum Genet 63(4):353–354 Broom M, Cannings C, Vickers GT (1999) Modelling dominance hierarchies using multi-player game theory. Ann Hum Genet 63(4):353–354
7.
go back to reference Chesson P, Gebauer RLE, Schwinning S (2004) Resource pulses, species interactions and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253 Chesson P, Gebauer RLE, Schwinning S (2004) Resource pulses, species interactions and diversity maintenance in arid and semi-arid environments. Oecologia 141:236–253
8.
go back to reference Cressman R (2003) Evolutionary Dynamics and Extensive Form Games. MIT Press, CambridgeMATH Cressman R (2003) Evolutionary Dynamics and Extensive Form Games. MIT Press, CambridgeMATH
9.
go back to reference Cressman R, Krivan V (2019) Bimatrix games that include interaction times alter the evolutionary outcome: the Owner–Intruder game. J Theor Biol 460:262–273MathSciNetMATH Cressman R, Krivan V (2019) Bimatrix games that include interaction times alter the evolutionary outcome: the Owner–Intruder game. J Theor Biol 460:262–273MathSciNetMATH
10.
go back to reference Dawkins R (1976) The Selfish Gene. Oxford University Press, Oxford Dawkins R (1976) The Selfish Gene. Oxford University Press, Oxford
11.
go back to reference Donofrio A (1997) Stability properties of pulse vaccination strategy in SEIR epidemic model. Math Comput Modelling 26:207–225 Donofrio A (1997) Stability properties of pulse vaccination strategy in SEIR epidemic model. Math Comput Modelling 26:207–225
12.
go back to reference Eshel I (2005) Asymmetric population games and the legacy of Maynard Smith: from evolution to game theory and back. Theor Popul Biol 68(1):11–18MATH Eshel I (2005) Asymmetric population games and the legacy of Maynard Smith: from evolution to game theory and back. Theor Popul Biol 68(1):11–18MATH
13.
go back to reference Eshel I, Akin E (1983) Coevolutionary instability of mixed Nash solutions. J Math Biol 18:123–133MathSciNetMATH Eshel I, Akin E (1983) Coevolutionary instability of mixed Nash solutions. J Math Biol 18:123–133MathSciNetMATH
14.
go back to reference Eshel I, Sansone E (1995) Owner–intruder conflict, Grafen effect and self-assessment. The Bourgeois principle re-examined. J Theor Biol 177(4):341–356 Eshel I, Sansone E (1995) Owner–intruder conflict, Grafen effect and self-assessment. The Bourgeois principle re-examined. J Theor Biol 177(4):341–356
15.
go back to reference Fan M, Wang K (1998) Optimal harvesting policy for single population with periodic coefficients. Math Biosci 152:165–177MathSciNetMATH Fan M, Wang K (1998) Optimal harvesting policy for single population with periodic coefficients. Math Biosci 152:165–177MathSciNetMATH
16.
go back to reference Grasman J, van Herwaarden OA (2001) A two-component model of hostparasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control. Math Biosci 169:207–216MathSciNetMATH Grasman J, van Herwaarden OA (2001) A two-component model of hostparasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control. Math Biosci 169:207–216MathSciNetMATH
17.
go back to reference Guo ZG, Song LP, Sun GQ, Li C, Jin Z (2019) Pattern dynamics of an SIS epidemic model with nonlocal delay. Int J Bifurc Chaos 29:1–12MathSciNetMATH Guo ZG, Song LP, Sun GQ, Li C, Jin Z (2019) Pattern dynamics of an SIS epidemic model with nonlocal delay. Int J Bifurc Chaos 29:1–12MathSciNetMATH
18.
go back to reference Hofbauer J, Sigmund K (1998) Evolutionary Games and Population Dynamics. Cambridge University Press, CambridgeMATH Hofbauer J, Sigmund K (1998) Evolutionary Games and Population Dynamics. Cambridge University Press, CambridgeMATH
19.
go back to reference Jin Z, Ma Z, Han (2004) The existence of periodic solutions of the n-species Lotka–Volterra competition system with impulsive. Chaos Solitons Fractals 22:181–188MathSciNetMATH Jin Z, Ma Z, Han (2004) The existence of periodic solutions of the n-species Lotka–Volterra competition system with impulsive. Chaos Solitons Fractals 22:181–188MathSciNetMATH
20.
go back to reference Korn R (1999) Some applications of impulse control in mathematical finance. Math Meth Oper Res 50:493–518MathSciNetMATH Korn R (1999) Some applications of impulse control in mathematical finance. Math Meth Oper Res 50:493–518MathSciNetMATH
21.
go back to reference Laksmikantham V, Bainov P, Simeonov S (1989) Theory of Impulsive Differential Equations. World Scientific, Singapore Laksmikantham V, Bainov P, Simeonov S (1989) Theory of Impulsive Differential Equations. World Scientific, Singapore
22.
go back to reference Lasalle JP (1976) Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, pp 418–420 Lasalle JP (1976) Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, pp 418–420
24.
go back to reference Liu X (1995) Impulsive stabilization and applications to population growth models. Rocky Mt J Math 25:381–395MathSciNetMATH Liu X (1995) Impulsive stabilization and applications to population growth models. Rocky Mt J Math 25:381–395MathSciNetMATH
25.
go back to reference Liu X, Chen L (2003) Complex dynamic of Holling type II Lotka–Volterra predator-prey system with impulsive perturbations on the predator. Chaos Solitons Fractals 6:311–320MathSciNetMATH Liu X, Chen L (2003) Complex dynamic of Holling type II Lotka–Volterra predator-prey system with impulsive perturbations on the predator. Chaos Solitons Fractals 6:311–320MathSciNetMATH
26.
go back to reference Liu B, Chen L (2004) The periodic competing Lotka–Volterra model with impulsive effect. Math Med Biol 21:129–145MATH Liu B, Chen L (2004) The periodic competing Lotka–Volterra model with impulsive effect. Math Med Biol 21:129–145MATH
27.
go back to reference Liu X, Rohlf K (1998) Impulsive control of a Lotka–Volterra system. IMA J Math Control Inf 15:269–284MathSciNetMATH Liu X, Rohlf K (1998) Impulsive control of a Lotka–Volterra system. IMA J Math Control Inf 15:269–284MathSciNetMATH
28.
go back to reference Liu B, Teng Z, Liu W (2007) Dynamical behaviors of the periodic Lotka–Volterra competing system with impulsive perturbations. Chaos Solitons Fractals 31:356–370MathSciNetMATH Liu B, Teng Z, Liu W (2007) Dynamical behaviors of the periodic Lotka–Volterra competing system with impulsive perturbations. Chaos Solitons Fractals 31:356–370MathSciNetMATH
29.
go back to reference Macias-Diaz JE (2019) Simple efficient simulation of the complex dynamics of some nonlinear hyperbolic predator–prey models with spatial diffusion. Appl Math Modelling 2019:1–21 Macias-Diaz JE (2019) Simple efficient simulation of the complex dynamics of some nonlinear hyperbolic predator–prey models with spatial diffusion. Appl Math Modelling 2019:1–21
30.
go back to reference Marrow P, Law R, Cannings C (1992) The coevolution of predator–prey interactions: ESSs and red queen dynamics. Proc R Soc Lond B 250:133–141 Marrow P, Law R, Cannings C (1992) The coevolution of predator–prey interactions: ESSs and red queen dynamics. Proc R Soc Lond B 250:133–141
31.
go back to reference Maynard Smith J (1982) Evolution and the Theory of Games. Cambridge University Press, CambridgeMATH Maynard Smith J (1982) Evolution and the Theory of Games. Cambridge University Press, CambridgeMATH
32.
go back to reference Maynard Smith J, Hofbauer J (1987) The “battle of the sexes”: a genetic model with limit cycle behavior. Theor Popul Biol 32:1–14MathSciNetMATH Maynard Smith J, Hofbauer J (1987) The “battle of the sexes”: a genetic model with limit cycle behavior. Theor Popul Biol 32:1–14MathSciNetMATH
33.
go back to reference Maynard Smith J, Parker J (1976) The logic of asymmetric contests. Anim Behav 25:1–9 Maynard Smith J, Parker J (1976) The logic of asymmetric contests. Anim Behav 25:1–9
34.
go back to reference Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18MATH Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18MATH
35.
go back to reference Pang G, Chen L (2014) Periodic solution of the impulsive state feedback control. Nonlinear Dyn 78:743–753MathSciNetMATH Pang G, Chen L (2014) Periodic solution of the impulsive state feedback control. Nonlinear Dyn 78:743–753MathSciNetMATH
36.
go back to reference Pei Y, Chen L, Zhang Q, Li C (2005) Extinction and permanence of one-prey multi-predators of Holling type II functions response system with impulsive biological control. J Theo Biol 235:495–503MathSciNet Pei Y, Chen L, Zhang Q, Li C (2005) Extinction and permanence of one-prey multi-predators of Holling type II functions response system with impulsive biological control. J Theo Biol 235:495–503MathSciNet
37.
go back to reference Roberts MG, Kao RR (1998) The dynamics of an infectious disease in a population with birth pulses. Math Biosci 149:23–36MATH Roberts MG, Kao RR (1998) The dynamics of an infectious disease in a population with birth pulses. Math Biosci 149:23–36MATH
38.
go back to reference Roca CP, Cuesta JA, Sánchez A (2009) Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys Life Rev 6:208–249 Roca CP, Cuesta JA, Sánchez A (2009) Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys Life Rev 6:208–249
39.
go back to reference Schaaf R (1985) A class of Hamiltonian systems with increasing periods. J für die rein angew Math 363:96–109MathSciNetMATH Schaaf R (1985) A class of Hamiltonian systems with increasing periods. J für die rein angew Math 363:96–109MathSciNetMATH
40.
go back to reference Schuster P, Sigmund K (1981) Coyness, philandering and stable strategies. Anim Behav 29:186–192 Schuster P, Sigmund K (1981) Coyness, philandering and stable strategies. Anim Behav 29:186–192
41.
go back to reference Selten R (1980) A note on evolutionarily stable strategies in asymmetric conflicts. J Theor Biol 84:93–101MathSciNet Selten R (1980) A note on evolutionarily stable strategies in asymmetric conflicts. J Theor Biol 84:93–101MathSciNet
42.
go back to reference Shin N, Kwag T, Park S, Kim YH (2017) Effects of operational decisions on the diffusion of epidemic disease: a system dynamics modeling of the MERS–CoV outbreak in South Korea. J Theor Biol 421:39–50 Shin N, Kwag T, Park S, Kim YH (2017) Effects of operational decisions on the diffusion of epidemic disease: a system dynamics modeling of the MERS–CoV outbreak in South Korea. J Theor Biol 421:39–50
43.
go back to reference Shulgi B, Stone L, Agur Z (1998) Pulse vaccination strategy in the SIR epidemic model. Bull Math Biol 60:1–26 Shulgi B, Stone L, Agur Z (1998) Pulse vaccination strategy in the SIR epidemic model. Bull Math Biol 60:1–26
44.
go back to reference Song X, Xiang Z (2006) The prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects. J Theor Biol 242:683–698MathSciNet Song X, Xiang Z (2006) The prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects. J Theor Biol 242:683–698MathSciNet
45.
go back to reference Sun G, Bai Z, Zhang Z, Jin Z (2013) Positive periodic solutions of an epidemic model with seasonality. Sci World J 2013:1–10 Sun G, Bai Z, Zhang Z, Jin Z (2013) Positive periodic solutions of an epidemic model with seasonality. Sci World J 2013:1–10
46.
go back to reference Sun M, Liu Y, Liu S, Hu Z, Chen L (2016) A novel method for analyzing the stability of periodic solution of impulsive state feedback model. Appl Math Comput 273:425–434MathSciNetMATH Sun M, Liu Y, Liu S, Hu Z, Chen L (2016) A novel method for analyzing the stability of periodic solution of impulsive state feedback model. Appl Math Comput 273:425–434MathSciNetMATH
47.
go back to reference Sun GQ, Jin Z, Wang Y, Jusup Marko (2016) Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys Life Rev 19:1–36 Sun GQ, Jin Z, Wang Y, Jusup Marko (2016) Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys Life Rev 19:1–36
48.
go back to reference Tang S, Cheke RA (2005) State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J Math Biol 50:257–292MathSciNetMATH Tang S, Cheke RA (2005) State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J Math Biol 50:257–292MathSciNetMATH
49.
go back to reference Tang S, Chen L (2002) Density-dependent birth rate, birth pulses and their population dynamic consequences. J Math Biol 44:185–199MathSciNetMATH Tang S, Chen L (2002) Density-dependent birth rate, birth pulses and their population dynamic consequences. J Math Biol 44:185–199MathSciNetMATH
50.
go back to reference Taylor PD, Jonker LB (1978) Evolutionarily stable strategies and game dynamics. J Theor Biol 40:145–156MathSciNetMATH Taylor PD, Jonker LB (1978) Evolutionarily stable strategies and game dynamics. J Theor Biol 40:145–156MathSciNetMATH
51.
go back to reference Wang W, Wang L, Li Z (2007) The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy. Chaos Solitons Fractals 32:1772–1785MathSciNetMATH Wang W, Wang L, Li Z (2007) The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy. Chaos Solitons Fractals 32:1772–1785MathSciNetMATH
52.
go back to reference Wang SC, Zhang BY, Li ZQ, Cressman R, Tao Y (2008) Evolutionary game dynamics with impulsive effects. J Theor Biol 254:384–389MathSciNetMATH Wang SC, Zhang BY, Li ZQ, Cressman R, Tao Y (2008) Evolutionary game dynamics with impulsive effects. J Theor Biol 254:384–389MathSciNetMATH
53.
go back to reference Wang L, Chen L, Juan JN (2010) The dynamics of an epidemic model for pest control with impulsive effect. Nonlinear Anal Real World Appl 11:1374–1386MathSciNetMATH Wang L, Chen L, Juan JN (2010) The dynamics of an epidemic model for pest control with impulsive effect. Nonlinear Anal Real World Appl 11:1374–1386MathSciNetMATH
54.
go back to reference Wei C, Chen L (2014) Homoclinic bifurcation of prey–predator model with impulsive state feedback control. Appl Math Comput 237:282–292MathSciNetMATH Wei C, Chen L (2014) Homoclinic bifurcation of prey–predator model with impulsive state feedback control. Appl Math Comput 237:282–292MathSciNetMATH
55.
go back to reference Xiao Y, Cheng D, Qin H (2006) Optimal impulsive control in periodic ecosystem. Syst Control Lett 55:558–565MathSciNetMATH Xiao Y, Cheng D, Qin H (2006) Optimal impulsive control in periodic ecosystem. Syst Control Lett 55:558–565MathSciNetMATH
56.
go back to reference Zhang Y, Chen L (2012) The periodic Volterra model with mutual interference and impulsive effect. Int J Biomath 05:1–15MathSciNetMATH Zhang Y, Chen L (2012) The periodic Volterra model with mutual interference and impulsive effect. Int J Biomath 05:1–15MathSciNetMATH
57.
go back to reference Zhang Y, Xiu Z, Chen L (2005) Dynamical complexity of a two-prey one-predator system with impulsive effect. Chaos Solitons Fractals 26:131–139MATH Zhang Y, Xiu Z, Chen L (2005) Dynamical complexity of a two-prey one-predator system with impulsive effect. Chaos Solitons Fractals 26:131–139MATH
58.
go back to reference Zhang BY, Cressman R, Tao Y (2010) Cooperation and stability through periodic impulses. PloS ONE 5(3):e9882 Zhang BY, Cressman R, Tao Y (2010) Cooperation and stability through periodic impulses. PloS ONE 5(3):e9882
59.
go back to reference Zhao M, Wang Y, Chen L (2012) Dynamic analysis of a predator–prey(pest) model with disease in prey and involving an impulsive control strategy. J Appl Math 2012:1–18MathSciNetMATH Zhao M, Wang Y, Chen L (2012) Dynamic analysis of a predator–prey(pest) model with disease in prey and involving an impulsive control strategy. J Appl Math 2012:1–18MathSciNetMATH
Metadata
Title
Bimatrix Replicator Dynamics with Periodic Impulses
Authors
Xinmiao An
Xiaomin Wang
Boyu Zhang
Publication date
02-01-2020
Publisher
Springer US
Published in
Dynamic Games and Applications / Issue 3/2020
Print ISSN: 2153-0785
Electronic ISSN: 2153-0793
DOI
https://doi.org/10.1007/s13235-019-00344-w

Other articles of this Issue 3/2020

Dynamic Games and Applications 3/2020 Go to the issue

Premium Partner