Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2021

05-01-2021 | Research Article-Chemical Engineering

Bimetallic Pd–Fe Supported on Nitrogen-Doped Reduced Graphene Oxide as Electrocatalyst for Formic Acid Oxidation

Author: SK Safdar Hossain

Published in: Arabian Journal for Science and Engineering | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study was conducted to exploit the properties of nitrogen-doped reduced graphene oxide (N-rGO) as support material for formic acid fuel cell. Nitrogen-doped reduced graphene oxide was synthesized by the hydrothermal synthesis method using graphene oxide (GO) flakes and urea as a nitrogen source. Palladium and iron with controllable atomic ratio were used as the active metals. Graphene oxide and carbon nanotube-supported PdFe nanoparticles were synthesized for comparison. The structure, morphology, and chemical composition of the synthesized catalysts were ascertained by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The average particle sizes for Pd3Fe/N-rGO and Pd/N-rGO were 4.65 and 3.95 nm, respectively. The electrochemical characterizations (CO stripping, cyclic voltammetry, and chronoamperometry) showed that the Pd3Fe/N-rGO electrocatalyst had higher electrocatalytic activity and stability compared with that of Pd3Fe/rGO and Pd3Fe/CNT. The mass activity of Pd3Fe/N-rGO in 0.5 M of HCOOH and 0.5 M of H2SO4 solutions was 1463.9 mAmg−1 Pd, which was 3.3 and 1.35 times that of the activity obtained with graphene oxide and carbon nanotubes with the same composition, respectively. The superior performance of the Pd3Fe/N-rGO catalyst was ascribed to the presence of nitrogen functionalities in the nitrogen-doped reduced GO and the synergistic interaction between Pd and Fe nanoparticles. Nitrogen-doped reduced GO promoted the formation of smaller and narrowly distributed nanoparticles and exerted favorable electronic effects because of electron transfer from N to Pd. Therefore, Pd3Fe/N-rGO can serve as a potential electrocatalyst for the oxidation of formic acid.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yan, W.; Xiang, Y.; Zhang, J.; Lu, S.; Jiang, S.P.: Substantially enhanced power output and durability of direct formic acid fuel cells at elevated temperatures. Adv. Sustain. Syst. 4, 2000065 (2020)CrossRef Yan, W.; Xiang, Y.; Zhang, J.; Lu, S.; Jiang, S.P.: Substantially enhanced power output and durability of direct formic acid fuel cells at elevated temperatures. Adv. Sustain. Syst. 4, 2000065 (2020)CrossRef
2.
go back to reference Eppinger, J.; Huang, K.-W.: Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2, 188–195 (2017)CrossRef Eppinger, J.; Huang, K.-W.: Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2, 188–195 (2017)CrossRef
3.
go back to reference Hossain, S.S.; Saleem, J.; Rahman, S.; Zaidi, S.M.J.; McKay, G.; Cheng, C.K.: Synthesis and evaluation of copper-supported titanium oxide nanotubes as electrocatalyst for the electrochemical reduction of carbon oxide to organics. Catalysts 9, 298 (2019)CrossRef Hossain, S.S.; Saleem, J.; Rahman, S.; Zaidi, S.M.J.; McKay, G.; Cheng, C.K.: Synthesis and evaluation of copper-supported titanium oxide nanotubes as electrocatalyst for the electrochemical reduction of carbon oxide to organics. Catalysts 9, 298 (2019)CrossRef
4.
go back to reference Cuesta, A.; Cabello, G.; Osawa, M.; Gutiérrez, C.: Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal. 2, 728–738 (2012)CrossRef Cuesta, A.; Cabello, G.; Osawa, M.; Gutiérrez, C.: Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal. 2, 728–738 (2012)CrossRef
5.
go back to reference Wang, Y.; Qi, Y.; Zhang, D.: New mechanism of the direct pathway for formic acid oxidation on Pd(111). Comput. Theoret. Chem. 1049, 51–54 (2014)CrossRef Wang, Y.; Qi, Y.; Zhang, D.: New mechanism of the direct pathway for formic acid oxidation on Pd(111). Comput. Theoret. Chem. 1049, 51–54 (2014)CrossRef
6.
go back to reference Choi, S.-I.; Herron, J.A.; Scaranto, J.; Huang, H.; Wang, Y.; Xia, X.; et al.: A comprehensive study of formic acid oxidation on palladium nanocrystals with different types of facets and twin defects. Chem. Cat. Chem. 7, 2077–2084 (2015) Choi, S.-I.; Herron, J.A.; Scaranto, J.; Huang, H.; Wang, Y.; Xia, X.; et al.: A comprehensive study of formic acid oxidation on palladium nanocrystals with different types of facets and twin defects. Chem. Cat. Chem. 7, 2077–2084 (2015)
7.
go back to reference Ferre-Vilaplana, A.; Perales-Rondón, J.V.; Buso-Rogero, C.; Feliu, J.M.; Herrero, E.: Formic acid oxidation on platinum electrodes: a detailed mechanism supported by experiments and calculations on well-defined surfaces. J. Mater. Chem. A. 5, 21773–21784 (2017)CrossRef Ferre-Vilaplana, A.; Perales-Rondón, J.V.; Buso-Rogero, C.; Feliu, J.M.; Herrero, E.: Formic acid oxidation on platinum electrodes: a detailed mechanism supported by experiments and calculations on well-defined surfaces. J. Mater. Chem. A. 5, 21773–21784 (2017)CrossRef
8.
go back to reference Yousaf, A.B.; Imran, M.; Zeb, A.; Xie, X.; Liang, K.; Zhou, X.; et al.: Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid. Catal. Sci. Technol. 6, 4794–4801 (2016)CrossRef Yousaf, A.B.; Imran, M.; Zeb, A.; Xie, X.; Liang, K.; Zhou, X.; et al.: Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid. Catal. Sci. Technol. 6, 4794–4801 (2016)CrossRef
9.
go back to reference Hu, S.; Scudiero, L.; Ha, S.: Electronic effect of Pd-transition metal bimetallic surfaces toward formic acid electrochemical oxidation. Electrochem. Commun. 38, 107–109 (2014)CrossRef Hu, S.; Scudiero, L.; Ha, S.: Electronic effect of Pd-transition metal bimetallic surfaces toward formic acid electrochemical oxidation. Electrochem. Commun. 38, 107–109 (2014)CrossRef
10.
go back to reference Matin, M.A.; Jang, J.-H.; Kwon, Y.-U.: PdM nanoparticles (M = Ni Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. J. Power Sourc. 262, 356–363 (2014)CrossRef Matin, M.A.; Jang, J.-H.; Kwon, Y.-U.: PdM nanoparticles (M = Ni Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions. J. Power Sourc. 262, 356–363 (2014)CrossRef
11.
go back to reference Ma, Y.; Li, T.; Chen, H.; Chen, X.; Deng, S.; Xu, L.; et al.: A general strategy to the synthesis of carbon-supported PdM (M = Co, Fe and Ni) nanodendrites as high-performance electrocatalysts for formic acid oxidation. J. Energy Chem. 26, 1238–1244 (2017)CrossRef Ma, Y.; Li, T.; Chen, H.; Chen, X.; Deng, S.; Xu, L.; et al.: A general strategy to the synthesis of carbon-supported PdM (M = Co, Fe and Ni) nanodendrites as high-performance electrocatalysts for formic acid oxidation. J. Energy Chem. 26, 1238–1244 (2017)CrossRef
12.
go back to reference Juárez-Marmolejo, L.; Pérez-Rodríguez, S.; Montes de Oca-Yemha, M.G.; Palomar-Pardavé, M.; Romero-Romo, M.; Ezeta-Mejía, A.; et al.: Carbon supported PdM (M = Fe, Co) electrocatalysts for formic acid oxidation. Influence of the Fe and Co precursors. Int. J. Hydrogen Energy 44, 1640–1649 (2019)CrossRef Juárez-Marmolejo, L.; Pérez-Rodríguez, S.; Montes de Oca-Yemha, M.G.; Palomar-Pardavé, M.; Romero-Romo, M.; Ezeta-Mejía, A.; et al.: Carbon supported PdM (M = Fe, Co) electrocatalysts for formic acid oxidation. Influence of the Fe and Co precursors. Int. J. Hydrogen Energy 44, 1640–1649 (2019)CrossRef
13.
go back to reference Mansor, M.; Timmiati, S.N.; Lim, K.L.; Wong, W.Y.; Kamarudin, S.K.; Nazirah Kamarudin, N.H.: Recent progress of anode catalysts and their support materials for methanol electrooxidation reaction. Int. J.Hydrogen Energy 44, 14744–14769 (2019)CrossRef Mansor, M.; Timmiati, S.N.; Lim, K.L.; Wong, W.Y.; Kamarudin, S.K.; Nazirah Kamarudin, N.H.: Recent progress of anode catalysts and their support materials for methanol electrooxidation reaction. Int. J.Hydrogen Energy 44, 14744–14769 (2019)CrossRef
14.
go back to reference Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Mikolajczuk-Zychora, A.; Mierzwa, B.; Borodzinski, A.; Stobinski, L.: A simple method for enhancing the catalytic activity of Pd deposited on carbon nanotubes used in direct formic acid fuel cells. Appl. Surf. Sci. 476, 806–814 (2019)CrossRef Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Mikolajczuk-Zychora, A.; Mierzwa, B.; Borodzinski, A.; Stobinski, L.: A simple method for enhancing the catalytic activity of Pd deposited on carbon nanotubes used in direct formic acid fuel cells. Appl. Surf. Sci. 476, 806–814 (2019)CrossRef
15.
go back to reference Zhou, Y.; Zhu, X.; Zhang, B.; Ye, D.-D.; Chen, R.; Liao, Q.: High performance formic acid fuel cell benefits from Pd–PdO catalyst supported by ordered mesoporous carbon. Int. J. Hydrogen Energy 45, 29235–29245 (2020)CrossRef Zhou, Y.; Zhu, X.; Zhang, B.; Ye, D.-D.; Chen, R.; Liao, Q.: High performance formic acid fuel cell benefits from Pd–PdO catalyst supported by ordered mesoporous carbon. Int. J. Hydrogen Energy 45, 29235–29245 (2020)CrossRef
16.
go back to reference Çögenli, M.S.; Bayrakçeken, Yurtcan A.: Heteroatom doped 3D graphene aerogel supported catalysts for formic acid and methanol oxidation. Int. J. Hydrogen Energy 45, 650–666 (2020)CrossRef Çögenli, M.S.; Bayrakçeken, Yurtcan A.: Heteroatom doped 3D graphene aerogel supported catalysts for formic acid and methanol oxidation. Int. J. Hydrogen Energy 45, 650–666 (2020)CrossRef
17.
go back to reference Iqbal, M.Z.; Rehman, A.-U.; Siddique, S.: Prospects and challenges of graphene based fuel cells. J. Energy Chem. 39, 217–234 (2019)CrossRef Iqbal, M.Z.; Rehman, A.-U.; Siddique, S.: Prospects and challenges of graphene based fuel cells. J. Energy Chem. 39, 217–234 (2019)CrossRef
18.
go back to reference Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Maegawa, K.; Tan, W.K.; et al.: Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 39, 45–65 (2020)CrossRef Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Maegawa, K.; Tan, W.K.; et al.: Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 39, 45–65 (2020)CrossRef
19.
go back to reference Chen, W.; Wan, M.; Liu, Q.; Xiong, X.; Yu, F.; Huang, Y.: Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods 3, 1800323 (2019)CrossRef Chen, W.; Wan, M.; Liu, Q.; Xiong, X.; Yu, F.; Huang, Y.: Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods 3, 1800323 (2019)CrossRef
20.
go back to reference Zhuang, S.; Nunna, B.B.; Mandal, D.; Lee, E.S.: A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement. Nano-Struct. Nano-Obj. 15, 140–152 (2018)CrossRef Zhuang, S.; Nunna, B.B.; Mandal, D.; Lee, E.S.: A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement. Nano-Struct. Nano-Obj. 15, 140–152 (2018)CrossRef
21.
go back to reference Kaur, M.; Kaur, M.; Sharma, V.K.: Nitrogen-doped graphene and graphene quantum dots: a review onsynthesis and applications in energy, sensors and environment. Adv. Colloid Interface Sci. 259, 44–64 (2018)CrossRef Kaur, M.; Kaur, M.; Sharma, V.K.: Nitrogen-doped graphene and graphene quantum dots: a review onsynthesis and applications in energy, sensors and environment. Adv. Colloid Interface Sci. 259, 44–64 (2018)CrossRef
22.
go back to reference Jin, Y.; Zhao, J.; Li, F.; Jia, W.; Liang, D.; Chen, H.; et al.: Nitrogen-doped graphene supported palladium-nickel nanoparticles with enhanced catalytic performance for formic acid oxidation. Electrochim. Acta 220, 83–90 (2016)CrossRef Jin, Y.; Zhao, J.; Li, F.; Jia, W.; Liang, D.; Chen, H.; et al.: Nitrogen-doped graphene supported palladium-nickel nanoparticles with enhanced catalytic performance for formic acid oxidation. Electrochim. Acta 220, 83–90 (2016)CrossRef
23.
go back to reference Chowdhury, S.R.; Maiyalagan, T.: Enhanced electro-catalytic activity of nitrogen-doped reduced graphene oxide supported PdCu nanoparticles for formic acid electro-oxidation. Int. J. Hydrogen Energy 44, 14808–14819 (2019)CrossRef Chowdhury, S.R.; Maiyalagan, T.: Enhanced electro-catalytic activity of nitrogen-doped reduced graphene oxide supported PdCu nanoparticles for formic acid electro-oxidation. Int. J. Hydrogen Energy 44, 14808–14819 (2019)CrossRef
24.
go back to reference Shao, Y.; Sui, J.; Yin, G.; Gao, Y.: Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl. Catal. B Environ. 79, 89–99 (2008)CrossRef Shao, Y.; Sui, J.; Yin, G.; Gao, Y.: Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl. Catal. B Environ. 79, 89–99 (2008)CrossRef
25.
go back to reference Xu, H.; Yan, B.; Li, S.; Wang, J.; Wang, C.; Guo, J.; et al.: N-doped graphene supported PtAu/Pt intermetallic core/dendritic shell nanocrystals for efficient electrocatalytic oxidation of formic acid. Chem. Eng. J. 334, 2638–2646 (2018)CrossRef Xu, H.; Yan, B.; Li, S.; Wang, J.; Wang, C.; Guo, J.; et al.: N-doped graphene supported PtAu/Pt intermetallic core/dendritic shell nanocrystals for efficient electrocatalytic oxidation of formic acid. Chem. Eng. J. 334, 2638–2646 (2018)CrossRef
26.
go back to reference Sun, Y.; Zhou, T.; Pan, Q.; Zhang, X.; Guo, J.: PtFe/nitrogen-doped graphene for high-performance electrooxidation of formic acid with composition sensitive electrocatalytic activity. RSC Adv. 5, 60237–60245 (2015)CrossRef Sun, Y.; Zhou, T.; Pan, Q.; Zhang, X.; Guo, J.: PtFe/nitrogen-doped graphene for high-performance electrooxidation of formic acid with composition sensitive electrocatalytic activity. RSC Adv. 5, 60237–60245 (2015)CrossRef
27.
go back to reference Li, W.; Zhou, T.; Le, Z.; Liao, M.; Liu, H.; Na, B.; et al.: Effect of thermal treatment of Pd decorated Fe/C nanocatalysts on their catalytic performance for formic acid oxidation. RSC Adv. 8, 35496–35502 (2018)CrossRef Li, W.; Zhou, T.; Le, Z.; Liao, M.; Liu, H.; Na, B.; et al.: Effect of thermal treatment of Pd decorated Fe/C nanocatalysts on their catalytic performance for formic acid oxidation. RSC Adv. 8, 35496–35502 (2018)CrossRef
28.
go back to reference Malolepszy, A.; Mazurkiewicz, M.; Stobinski, L.; Lesiak, B.; Kövér, L.; Tóth, J.; et al.: Deactivation resistant Pd–ZrO2 supported on multiwall carbon nanotubes catalyst for direct formic acid fuel cells. Int. J. Hydrogen Energy 40, 16724–16733 (2015)CrossRef Malolepszy, A.; Mazurkiewicz, M.; Stobinski, L.; Lesiak, B.; Kövér, L.; Tóth, J.; et al.: Deactivation resistant Pd–ZrO2 supported on multiwall carbon nanotubes catalyst for direct formic acid fuel cells. Int. J. Hydrogen Energy 40, 16724–16733 (2015)CrossRef
29.
go back to reference Man, R.W.Y.; Brown, A.R.C.; Wolf, M.O.: Mechanism of formation of palladium nanoparticles: lewis base assisted, low-temperature preparation of monodisperse nanoparticles. Angew. Chem. Int. Ed. 51, 11350–11353 (2012)CrossRef Man, R.W.Y.; Brown, A.R.C.; Wolf, M.O.: Mechanism of formation of palladium nanoparticles: lewis base assisted, low-temperature preparation of monodisperse nanoparticles. Angew. Chem. Int. Ed. 51, 11350–11353 (2012)CrossRef
30.
go back to reference Liao, M.; Hu, Q.; Zheng, J.; Li, Y.; Zhou, H.; Zhong, C.-J.; et al.: Pd decorated Fe/C nanocatalyst for formic acid electrooxidation. Electrochim. Acta 111, 504–509 (2013)CrossRef Liao, M.; Hu, Q.; Zheng, J.; Li, Y.; Zhou, H.; Zhong, C.-J.; et al.: Pd decorated Fe/C nanocatalyst for formic acid electrooxidation. Electrochim. Acta 111, 504–509 (2013)CrossRef
31.
go back to reference Cai, B.; Ma, Y.; Wang, S.; Yi, N.; Zheng, Y.; Qiu, X.; et al.: Facile synthesis of PdFe alloy tetrahedrons for boosting electrocatalytic property towards formic acid oxidation. Nanoscale 11, 18015–18020 (2019)CrossRef Cai, B.; Ma, Y.; Wang, S.; Yi, N.; Zheng, Y.; Qiu, X.; et al.: Facile synthesis of PdFe alloy tetrahedrons for boosting electrocatalytic property towards formic acid oxidation. Nanoscale 11, 18015–18020 (2019)CrossRef
32.
go back to reference Aslam, Z.; Qaiser, M.; Ali, R.; Abbas, A.; Ihsanullah, F.; Zarin, S.: Al2O3/MnO2/CNTs nanocomposite: synthesis, characterization and phenol adsorption. Fullerenes, Nanotubes, Carbon Nanostruct. 27, 591–600 (2019)CrossRef Aslam, Z.; Qaiser, M.; Ali, R.; Abbas, A.; Ihsanullah, F.; Zarin, S.: Al2O3/MnO2/CNTs nanocomposite: synthesis, characterization and phenol adsorption. Fullerenes, Nanotubes, Carbon Nanostruct. 27, 591–600 (2019)CrossRef
33.
go back to reference Zarin, S.; Aslam, Z.; Zahir, A.; Kamal, M.S.; Rana, A.G.; Ahmad, W.; et al.: Synthesis of bimetallic/carbon nanocomposite and its application for phenol removal. J. Iran. Chem. Soc. 15, 2689–2701 (2018)CrossRef Zarin, S.; Aslam, Z.; Zahir, A.; Kamal, M.S.; Rana, A.G.; Ahmad, W.; et al.: Synthesis of bimetallic/carbon nanocomposite and its application for phenol removal. J. Iran. Chem. Soc. 15, 2689–2701 (2018)CrossRef
34.
go back to reference Akhtar, A.; Aslam, Z.; Asghar, A.; Bello, M.M.; Raman, A.A.A.: Electrocoagulation of Congo Red dye-containing wastewater: optimization of operational parameters and process mechanism. J. Environ. Chem. Eng. 8, 104055 (2020)CrossRef Akhtar, A.; Aslam, Z.; Asghar, A.; Bello, M.M.; Raman, A.A.A.: Electrocoagulation of Congo Red dye-containing wastewater: optimization of operational parameters and process mechanism. J. Environ. Chem. Eng. 8, 104055 (2020)CrossRef
35.
go back to reference Zhou, W.; Lee, J.Y.: Particle size effects in Pd-Catalyzed electrooxidation of formic acid. J. Phys. Chem. C 112, 3789–3793 (2008)CrossRef Zhou, W.; Lee, J.Y.: Particle size effects in Pd-Catalyzed electrooxidation of formic acid. J. Phys. Chem. C 112, 3789–3793 (2008)CrossRef
36.
go back to reference Zhan, D.; Velmurugan, J.; Mirkin, M.V.: Adsorption/Desorption of hydrogen on Pt nanoelectrodes: evidence of surface diffusion and spillover. J. Am. Chem. Soc. 131, 14756–14760 (2009)CrossRef Zhan, D.; Velmurugan, J.; Mirkin, M.V.: Adsorption/Desorption of hydrogen on Pt nanoelectrodes: evidence of surface diffusion and spillover. J. Am. Chem. Soc. 131, 14756–14760 (2009)CrossRef
37.
go back to reference Zhang, X.; Yin, H.; Wang, J.; Chang, L.; Gao, Y.; Liu, W.; et al.: Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale 5, 8392–8397 (2013)CrossRef Zhang, X.; Yin, H.; Wang, J.; Chang, L.; Gao, Y.; Liu, W.; et al.: Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale 5, 8392–8397 (2013)CrossRef
38.
go back to reference Han, B.; Xu, C.: Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 39, 18247–18255 (2014)CrossRef Han, B.; Xu, C.: Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 39, 18247–18255 (2014)CrossRef
39.
go back to reference Xing, Z.; Guo, Z.; Chen, X.; Zhang, P.; Yang, W.: Optimizing the activity of Pd based catalysts towards room-temperature formic acid decomposition by Au alloying. Catal. Sci. Technol. 9, 588–592 (2019)CrossRef Xing, Z.; Guo, Z.; Chen, X.; Zhang, P.; Yang, W.: Optimizing the activity of Pd based catalysts towards room-temperature formic acid decomposition by Au alloying. Catal. Sci. Technol. 9, 588–592 (2019)CrossRef
40.
go back to reference Ulas, B.; Caglar, A.; Kivrak, H.: Determination of optimum Pd: Ni ratio for PdxNi100-x/CNTs formic acid electrooxidation catalysts synthesized via sodium borohydride reduction method. Int. J. Energy Res. 43, 3436–3445 (2019)CrossRef Ulas, B.; Caglar, A.; Kivrak, H.: Determination of optimum Pd: Ni ratio for PdxNi100-x/CNTs formic acid electrooxidation catalysts synthesized via sodium borohydride reduction method. Int. J. Energy Res. 43, 3436–3445 (2019)CrossRef
41.
go back to reference Yuan, D.; Zhang, Y.: Theoretical investigations of HCOOH decomposition on ordered Cu-Pd alloy surfaces. Appl. Surf. Sci. 462, 649–658 (2018)CrossRef Yuan, D.; Zhang, Y.: Theoretical investigations of HCOOH decomposition on ordered Cu-Pd alloy surfaces. Appl. Surf. Sci. 462, 649–658 (2018)CrossRef
42.
go back to reference Wang, H.; Li, Y.; Li, C.; Wang, Z.; Xu, Y.; Li, X.; et al.: Hyperbranched PdRu nanospine assemblies: an efficient electrocatalyst for formic acid oxidation. J. Mater. Chem. A. 6, 17514–17518 (2018)CrossRef Wang, H.; Li, Y.; Li, C.; Wang, Z.; Xu, Y.; Li, X.; et al.: Hyperbranched PdRu nanospine assemblies: an efficient electrocatalyst for formic acid oxidation. J. Mater. Chem. A. 6, 17514–17518 (2018)CrossRef
43.
go back to reference Kiyani, R.; Rowshanzamir, S.; Parnian, M.J.: Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: synthesis, characterization and electrocatalytic performance. Energy 113, 1162–1173 (2016)CrossRef Kiyani, R.; Rowshanzamir, S.; Parnian, M.J.: Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: synthesis, characterization and electrocatalytic performance. Energy 113, 1162–1173 (2016)CrossRef
44.
go back to reference She, Y.; Lu, Z.; Fan, W.; Jewell, S.; Leung, M.K.H.: Facile preparation of PdNi/rGO and its electrocatalytic performance towards formic acid oxidation. J. Mater. Chem. A. 2, 3894–3898 (2014)CrossRef She, Y.; Lu, Z.; Fan, W.; Jewell, S.; Leung, M.K.H.: Facile preparation of PdNi/rGO and its electrocatalytic performance towards formic acid oxidation. J. Mater. Chem. A. 2, 3894–3898 (2014)CrossRef
45.
go back to reference Mikołajczuk, A.; Borodzinski, A.; Kedzierzawski, P.; Stobinski, L.; Mierzwa, B.; Dziura, R.: Deactivation of carbon supported palladium catalyst in direct formic acid fuel cell. Appl. Surf. Sci. 257, 8211–8214 (2011)CrossRef Mikołajczuk, A.; Borodzinski, A.; Kedzierzawski, P.; Stobinski, L.; Mierzwa, B.; Dziura, R.: Deactivation of carbon supported palladium catalyst in direct formic acid fuel cell. Appl. Surf. Sci. 257, 8211–8214 (2011)CrossRef
46.
go back to reference Yu, X.; Pickup, P.G.: Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation. Electrochem. Commun. 11, 2012–2014 (2009)CrossRef Yu, X.; Pickup, P.G.: Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation. Electrochem. Commun. 11, 2012–2014 (2009)CrossRef
47.
go back to reference Xiong, B.; Zhou, Y.; Zhao, Y.; Wang, J.; Chen, X.; O’Hayre, R.; et al.: The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon 52, 181–192 (2013)CrossRef Xiong, B.; Zhou, Y.; Zhao, Y.; Wang, J.; Chen, X.; O’Hayre, R.; et al.: The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon 52, 181–192 (2013)CrossRef
48.
go back to reference Ma, Jh; Wang, L.; Mu, X.; Li, L.: Nitrogen-doped graphene supported Pt nanoparticles with enhanced performance for methanol oxidation. Int. J. Hydrogen Energy 40, 2641–2647 (2015)CrossRef Ma, Jh; Wang, L.; Mu, X.; Li, L.: Nitrogen-doped graphene supported Pt nanoparticles with enhanced performance for methanol oxidation. Int. J. Hydrogen Energy 40, 2641–2647 (2015)CrossRef
49.
go back to reference Xu, H.; Yan, B.; Zhang, K.; Wang, J.; Li, S.; Wang, C.; et al.: N-doped graphene-supported binary PdBi networks for formic acid oxidation. Appl. Surf. Sci. 416, 191–199 (2017)CrossRef Xu, H.; Yan, B.; Zhang, K.; Wang, J.; Li, S.; Wang, C.; et al.: N-doped graphene-supported binary PdBi networks for formic acid oxidation. Appl. Surf. Sci. 416, 191–199 (2017)CrossRef
50.
go back to reference Zhang, X.; Zhu, J.; Tiwary, C.S.; Ma, Z.; Huang, H.; Zhang, J.; et al.: Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces. 8, 10858–10865 (2016)CrossRef Zhang, X.; Zhu, J.; Tiwary, C.S.; Ma, Z.; Huang, H.; Zhang, J.; et al.: Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces. 8, 10858–10865 (2016)CrossRef
51.
go back to reference Zhu, J.; Xiao, M.; Zhao, X.; Li, K.; Liu, C.; Xing, W.: Nitrogen-doped carbon–graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation. Chem. Commun. 50, 12201–12203 (2014)CrossRef Zhu, J.; Xiao, M.; Zhao, X.; Li, K.; Liu, C.; Xing, W.: Nitrogen-doped carbon–graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation. Chem. Commun. 50, 12201–12203 (2014)CrossRef
52.
go back to reference Hu, S.; Munoz, F.; Noborikawa, J.; Haan, J.; Scudiero, L.; Ha, S.: Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation. Appl. Catal. B Environ. 180, 758–765 (2016)CrossRef Hu, S.; Munoz, F.; Noborikawa, J.; Haan, J.; Scudiero, L.; Ha, S.: Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation. Appl. Catal. B Environ. 180, 758–765 (2016)CrossRef
53.
go back to reference Zhang, Z.; Gong, Y.; Wu, D.; Li, Z.; Li, Q.; Zheng, L.; et al.: Facile fabrication of stable PdCu clusters uniformly decorated on graphene as an efficient electrocatalyst for formic acid oxidation. Int. J. Hydrogen Energy 44, 2731–2740 (2019)CrossRef Zhang, Z.; Gong, Y.; Wu, D.; Li, Z.; Li, Q.; Zheng, L.; et al.: Facile fabrication of stable PdCu clusters uniformly decorated on graphene as an efficient electrocatalyst for formic acid oxidation. Int. J. Hydrogen Energy 44, 2731–2740 (2019)CrossRef
54.
go back to reference Chen, D.; Sun, P.; Liu, H.; Yang, J.: Bimetallic Cu–Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. J. Mater. Chem. A. 5, 4421–4429 (2017)CrossRef Chen, D.; Sun, P.; Liu, H.; Yang, J.: Bimetallic Cu–Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. J. Mater. Chem. A. 5, 4421–4429 (2017)CrossRef
Metadata
Title
Bimetallic Pd–Fe Supported on Nitrogen-Doped Reduced Graphene Oxide as Electrocatalyst for Formic Acid Oxidation
Author
SK Safdar Hossain
Publication date
05-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05192-0

Other articles of this Issue 7/2021

Arabian Journal for Science and Engineering 7/2021 Go to the issue

Premium Partners